Decider:灵活可扩展的Ruby机器学习库
项目介绍
Decider 是一个面向Ruby程序员的机器学习库,它强调灵活性和易用性。不同于其他诸如classifier-reborn或basset等Ruby中的机器学习解决方案,Decider设计得让你能够立刻上手实验,而无需深入了解各种复杂类的内部运作。它的核心特性包括对文本数据的预处理支持,如文本分词、URI处理、词干提取、停用词移除以及n-gram生成,所有这些都能按需定制。此外,Decider自带的默认配置已经足够作为一个电子邮件垃圾过滤器,准确率高达约96%,并且支持通过Moneta持久化模型,兼容几乎所有的Ruby存储机制,从而支持数据库存储和分布式分类。
项目快速启动
为了快速体验Decider,你可以按照以下步骤进行:
首先,确保你的环境中安装了Ruby,并且推荐使用Ruby 1.9或JRuby以获得更好的性能。
安装Decider
在终端运行以下命令来添加Decider到你的Gemfile或者直接安装gem:
gem 'decider'
如果你不使用Bundler,直接安装:
gem install decider
实际操作示例
接下来,在IRB或你的Ruby脚本中,快速设置一个简单的垃圾邮件分类器:
require 'decider'
# 初始化一个二分类器,用于区分“spam”和“ham”
c = Decider.classifier(:spam, :ham)
# 训练模型
c.spam << "赢取巨奖,速来点击!"
c.ham << "团队会议后一起去跑步如何?"
# 应用分类
puts c.classify("免费领取礼品!") # 输出可能是: :spam
# 查看某个文本属于各类别的概率
puts c.scores("今晚一起编程怎么样?")
应用案例和最佳实践
Decider非常适合于那些需要定制化文本处理逻辑的场景,比如内容过滤、简单的推荐系统或是特定领域内的文本分类任务。最佳实践中,应该充分利用Decider的灵活性,根据数据特点调整预处理策略(例如,增加n-gram大小来捕捉更复杂的语境信息)并持续优化模型参数以达到最优分类效果。
示例:定制化文本分析
在处理用户评论情感分析时,你可能这样设定Decider:
c = Decider.classifier(:positive, :negative) do |doc|
doc.plain_text
doc.stem
doc.stop_words_remove
end
# 根据实际情况加入训练数据
c.positive << "产品非常满意!"
c.negative << "配送延迟,很失望。"
# 分析新评论
puts c.classify("服务态度很好")
典型生态项目
虽然Decider本身是一个独立的机器学习库,但在Ruby生态中,它可以与数据处理框架(如DataMapper或ActiveRecord)结合使用,实现模型的数据持久化,或是与Web框架(如Rails)集成,提供实时分类服务。尽管没有特定的“典型生态项目”直接提及,开发者通常会在需要简易机器学习功能的应用中集成Decider,比如在博客平台自动标记垃圾评论、电商网站的产品推荐引擎等,这些都是Decider可以融入并发挥效能的情景。
以上就是Decider的基本使用指南,通过这个简介,你应该能够开始探索和利用Decider来解决自己的机器学习需求了。记得根据具体应用场景调整配置,以达到最佳的分类效果。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00