Joblib并行处理中"array is not writeable"错误的解决方案
2025-06-16 12:29:59作者:薛曦旖Francesca
在使用Python的Joblib库进行并行计算时,可能会遇到"ValueError: array is not writeable"的错误。这个问题通常出现在使用Parallel类进行多进程计算时,特别是在处理NumPy数组或类似数据结构的情况下。
问题背景
当Joblib尝试在多进程环境中共享数据时,它会自动使用内存映射(memmap)来优化性能。然而,某些情况下,特别是当处理的数据结构具有写保护属性时,这种自动内存映射机制会导致"array is not writeable"错误。
错误表现
典型的错误堆栈会显示:
- 在创建TriContourGenerator时失败
- 底层错误是"ValueError: array is not writeable"
- 错误发生在多进程环境中,当Joblib尝试序列化/反序列化数据时
解决方案
方法一:禁用自动内存映射
最直接的解决方案是禁用Joblib的自动内存映射功能。可以通过设置max_nbytes=None来实现:
from joblib import parallel_config
with parallel_config(max_nbytes=None):
# 在这里放置使用Parallel的代码
Parallel(n_jobs=4)(delayed(func)(args) for args in iterable)
方法二:修改数组的可写属性
如果问题源于特定的NumPy数组不可写,可以在传递给Parallel之前确保数组是可写的:
array = np.asarray(array) # 确保是NumPy数组
array.flags.writeable = True # 设置为可写
方法三:使用共享内存
对于大型数组,可以考虑使用共享内存来避免数据复制:
from joblib import Memory
mem = Memory(location='/tmp/joblib_cache')
result = mem.cache(Parallel)(n_jobs=4)(delayed(func)(args) for args in iterable)
技术原理
Joblib默认会尝试对大型数组使用内存映射来优化性能。当它检测到数组大小超过max_nbytes阈值时,会自动将数组转换为内存映射文件。然而,某些数据结构(如Matplotlib的三角剖分对象)可能不支持这种转换,从而导致错误。
最佳实践
- 对于小型数据集,直接禁用内存映射(
max_nbytes=None) - 对于大型数据集,考虑手动控制内存映射行为
- 确保传递给并行函数的所有数据结构都是可序列化的
- 在复杂对象中使用
__reduce__方法自定义序列化行为
总结
"array is not writeable"错误通常表明Joblib的自动优化机制与特定数据结构不兼容。通过理解Joblib的内存管理机制,我们可以灵活地调整参数或修改数据结构来解决这个问题。在大多数情况下,简单地禁用自动内存映射就能解决问题,同时保持代码的并行性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0123
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328