Joblib并行处理中"array is not writeable"错误的解决方案
2025-06-16 21:23:54作者:薛曦旖Francesca
在使用Python的Joblib库进行并行计算时,可能会遇到"ValueError: array is not writeable"的错误。这个问题通常出现在使用Parallel类进行多进程计算时,特别是在处理NumPy数组或类似数据结构的情况下。
问题背景
当Joblib尝试在多进程环境中共享数据时,它会自动使用内存映射(memmap)来优化性能。然而,某些情况下,特别是当处理的数据结构具有写保护属性时,这种自动内存映射机制会导致"array is not writeable"错误。
错误表现
典型的错误堆栈会显示:
- 在创建TriContourGenerator时失败
- 底层错误是"ValueError: array is not writeable"
- 错误发生在多进程环境中,当Joblib尝试序列化/反序列化数据时
解决方案
方法一:禁用自动内存映射
最直接的解决方案是禁用Joblib的自动内存映射功能。可以通过设置max_nbytes=None
来实现:
from joblib import parallel_config
with parallel_config(max_nbytes=None):
# 在这里放置使用Parallel的代码
Parallel(n_jobs=4)(delayed(func)(args) for args in iterable)
方法二:修改数组的可写属性
如果问题源于特定的NumPy数组不可写,可以在传递给Parallel之前确保数组是可写的:
array = np.asarray(array) # 确保是NumPy数组
array.flags.writeable = True # 设置为可写
方法三:使用共享内存
对于大型数组,可以考虑使用共享内存来避免数据复制:
from joblib import Memory
mem = Memory(location='/tmp/joblib_cache')
result = mem.cache(Parallel)(n_jobs=4)(delayed(func)(args) for args in iterable)
技术原理
Joblib默认会尝试对大型数组使用内存映射来优化性能。当它检测到数组大小超过max_nbytes
阈值时,会自动将数组转换为内存映射文件。然而,某些数据结构(如Matplotlib的三角剖分对象)可能不支持这种转换,从而导致错误。
最佳实践
- 对于小型数据集,直接禁用内存映射(
max_nbytes=None
) - 对于大型数据集,考虑手动控制内存映射行为
- 确保传递给并行函数的所有数据结构都是可序列化的
- 在复杂对象中使用
__reduce__
方法自定义序列化行为
总结
"array is not writeable"错误通常表明Joblib的自动优化机制与特定数据结构不兼容。通过理解Joblib的内存管理机制,我们可以灵活地调整参数或修改数据结构来解决这个问题。在大多数情况下,简单地禁用自动内存映射就能解决问题,同时保持代码的并行性能。
登录后查看全文
热门项目推荐
- Ggpt-oss-20bgpt-oss-20b —— 适用于低延迟和本地或特定用途的场景(210 亿参数,其中 36 亿活跃参数)Jinja00
- Ggpt-oss-120bgpt-oss-120b是OpenAI开源的高性能大模型,专为复杂推理任务和智能代理场景设计。这款拥有1170亿参数的混合专家模型采用原生MXFP4量化技术,可单卡部署在H100 GPU上运行。它支持可调节的推理强度(低/中/高),完整思维链追溯,并内置函数调用、网页浏览等智能体能力。模型遵循Apache 2.0许可,允许自由商用和微调,特别适合需要生产级推理能力的开发者。通过Transformers、vLLM等主流框架即可快速调用,还能在消费级硬件通过Ollama运行,为AI应用开发提供强大而灵活的基础设施。【此简介由AI生成】Jinja00
- QQwen3-Coder-480B-A35B-InstructQwen3-Coder-480B-A35B-Instruct是当前最强大的开源代码模型之一,专为智能编程与工具调用设计。它拥有4800亿参数,支持256K长上下文,并可扩展至1M,特别擅长处理复杂代码库任务。模型在智能编码、浏览器操作等任务上表现卓越,性能媲美Claude Sonnet。支持多种平台工具调用,内置优化的函数调用格式,能高效完成代码生成与逻辑推理。推荐搭配温度0.7、top_p 0.8等参数使用,单次输出最高支持65536个token。无论是快速排序算法实现,还是数学工具链集成,都能流畅执行,为开发者提供接近人类水平的编程辅助体验。【此简介由AI生成】Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
hello-uniapp
uni-app 是一个使用 Vue.js 开发所有前端应用的框架,开发者编写一套代码,可发布到iOS、Android、鸿蒙Next、Web(响应式)、以及各种小程序(微信/支付宝/百度/抖音/飞书/QQ/快手/钉钉/淘宝/京东/小红书)、快应用、鸿蒙元服务等多个平台Vue00GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。05GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0255Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013RuoYi-Cloud-Plus
微服务管理系统 重写RuoYi-Cloud所有功能 整合 SpringCloudAlibaba、Dubbo3.0、Sa-Token、Mybatis-Plus、MQ、Warm-Flow工作流、ES、Docker 全方位升级 定期同步Java014
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
150
241

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
763
475

openGauss kernel ~ openGauss is an open source relational database management system
C++
114
171

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
128
255

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
377
361

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.04 K
0

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
79
2

用于管理和运行HarmonyOS Issue解决方案Demo集锦。
ArkTS
13
10

基于全新 DevUI Design 设计体系的 Vue3 组件库,面向研发工具的开源前端解决方案。
TypeScript
568
69

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
318
1.05 K