MMPose项目中关键点置信度分数解析与处理方法
2025-06-03 13:04:27作者:劳婵绚Shirley
关键点置信度分数的特性分析
在MMPose项目中,当使用RTMW-L等基于SimCC算法的模型进行人体姿态估计时,模型输出的关键点置信度分数(keypoint_scores)具有一些特殊性质需要开发者注意。
首先,这些置信度分数并不是经过归一化处理的概率值,而是模型直接输出的原始分数。从实际运行结果可以看到,这些分数值通常大于1,且没有明确的上限。这与许多其他视觉任务中0-1范围的置信度分数有所不同。
置信度分数值域问题
模型输出的置信度分数存在以下特点:
- 无固定值域限制:分数可以大于1,且理论上没有上限
- 不同关键点间的分数差异较大
- 同一关键点在不同帧中的分数波动可能明显
这种设计源于SimCC算法的特性,它使用分类任务的方式预测关键点位置,输出的分数反映了模型对关键点位置的"确信程度",但并非概率值。
置信度分数处理方法
针对这种非归一化的置信度分数,开发者可以采取以下几种处理方式:
1. 直接使用原始分数
对于只需要相对比较的场景,可以直接使用原始分数,通过设定经验阈值来过滤低质量关键点。这种方法简单直接,但需要针对具体场景调整阈值。
2. 使用内置后处理获取归一化分数
MMPose提供了内置的后处理方法,可以通过设置return_datasamples=True参数获取归一化后的关键点可见性分数(keypoints_visible),这个分数范围在0-1之间:
postprocess_kwargs = {"return_datasamples":True}
result_generator = pose_detector(images, show=False, **postprocess_kwargs)
3. 自定义归一化处理
开发者也可以参考MMPose的后处理代码自行实现归一化:
def normalize_scores(scores):
max_score = np.max(scores)
min_score = np.min(scores)
return (scores - min_score) / (max_score - min_score)
模型导出时的注意事项
当需要将模型导出为ONNX或TensorRT格式时,需特别注意:
- ONNX导出时需要明确指定输出名称,包括关键点坐标和置信度分数
- TensorRT转换时需保留完整的后处理流程才能获取归一化分数
- 对于SimCC类模型,导出配置需要正确处理simcc_x和simcc_y输出
实际应用建议
在实际应用中,建议开发者:
- 对于可视化展示,使用归一化后的分数更直观
- 对于算法处理流程,原始分数可能包含更多信息
- 关键点过滤阈值应根据具体场景通过实验确定
- 注意不同模型架构可能产生不同的分数分布特性
通过理解MMPose中关键点置信度分数的特性和处理方法,开发者可以更有效地利用这些信息来优化姿态估计应用的效果。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
201
81
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
846
427
Ascend Extension for PyTorch
Python
275
311
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695