MMPose项目中关键点置信度分数解析与处理方法
2025-06-03 08:45:34作者:劳婵绚Shirley
关键点置信度分数的特性分析
在MMPose项目中,当使用RTMW-L等基于SimCC算法的模型进行人体姿态估计时,模型输出的关键点置信度分数(keypoint_scores)具有一些特殊性质需要开发者注意。
首先,这些置信度分数并不是经过归一化处理的概率值,而是模型直接输出的原始分数。从实际运行结果可以看到,这些分数值通常大于1,且没有明确的上限。这与许多其他视觉任务中0-1范围的置信度分数有所不同。
置信度分数值域问题
模型输出的置信度分数存在以下特点:
- 无固定值域限制:分数可以大于1,且理论上没有上限
- 不同关键点间的分数差异较大
- 同一关键点在不同帧中的分数波动可能明显
这种设计源于SimCC算法的特性,它使用分类任务的方式预测关键点位置,输出的分数反映了模型对关键点位置的"确信程度",但并非概率值。
置信度分数处理方法
针对这种非归一化的置信度分数,开发者可以采取以下几种处理方式:
1. 直接使用原始分数
对于只需要相对比较的场景,可以直接使用原始分数,通过设定经验阈值来过滤低质量关键点。这种方法简单直接,但需要针对具体场景调整阈值。
2. 使用内置后处理获取归一化分数
MMPose提供了内置的后处理方法,可以通过设置return_datasamples=True参数获取归一化后的关键点可见性分数(keypoints_visible),这个分数范围在0-1之间:
postprocess_kwargs = {"return_datasamples":True}
result_generator = pose_detector(images, show=False, **postprocess_kwargs)
3. 自定义归一化处理
开发者也可以参考MMPose的后处理代码自行实现归一化:
def normalize_scores(scores):
max_score = np.max(scores)
min_score = np.min(scores)
return (scores - min_score) / (max_score - min_score)
模型导出时的注意事项
当需要将模型导出为ONNX或TensorRT格式时,需特别注意:
- ONNX导出时需要明确指定输出名称,包括关键点坐标和置信度分数
- TensorRT转换时需保留完整的后处理流程才能获取归一化分数
- 对于SimCC类模型,导出配置需要正确处理simcc_x和simcc_y输出
实际应用建议
在实际应用中,建议开发者:
- 对于可视化展示,使用归一化后的分数更直观
- 对于算法处理流程,原始分数可能包含更多信息
- 关键点过滤阈值应根据具体场景通过实验确定
- 注意不同模型架构可能产生不同的分数分布特性
通过理解MMPose中关键点置信度分数的特性和处理方法,开发者可以更有效地利用这些信息来优化姿态估计应用的效果。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCR暂无简介Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp Cafe Menu项目中link元素的void特性解析2 freeCodeCamp课程中屏幕放大器知识点优化分析3 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp博客页面工作坊中的断言方法优化建议7 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析8 freeCodeCamp英语课程填空题提示缺失问题分析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 开源电子设计自动化利器:KiCad EDA全方位使用指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 RadiAnt DICOM Viewer 2021.2:专业医学影像阅片软件的全面指南 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 移动端HTML医疗影像DICOM在线浏览解决方案:零足迹医疗图像查看器
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
246
2.42 K
deepin linux kernel
C
24
6
仓颉编译器源码及 cjdb 调试工具。
C++
116
88
React Native鸿蒙化仓库
JavaScript
216
293
仓颉编程语言测试用例。
Cangjie
34
78
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
353
1.68 K
暂无简介
Dart
542
118
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.01 K
592
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
406
Ascend Extension for PyTorch
Python
82
116