Spring Data MongoDB 中 ApplicationListener 导致的循环依赖问题解析
问题背景
在将项目从 Spring Boot 2.7.9 升级到 3.3.1 版本时,开发者遇到了一个典型的循环依赖问题。这个问题特别出现在使用 Spring Data MongoDB 的场景下,当服务类实现了 ApplicationListener 接口并依赖 MongoTemplate 时就会触发。
问题本质
这个问题的核心在于 Spring 容器的初始化顺序和 ApplicationListener 的特殊性。ApplicationListener 实现类会在 Spring 容器生命周期的早期阶段就被处理,因为容器需要它们来接收和处理各种技术性应用事件。而 MongoDB 的对象转换基础设施也会发布这样的事件。
当 MongoMappingContext 初始化时,它会触发一系列依赖关系:
- MongoTemplate 需要 MappingMongoConverter
- MappingMongoConverter 需要 MongoMappingContext
- MongoMappingContext 会扫描 @Document 注解的类
- 如果这些类所在的包中包含了 ApplicationListener 实现类,就会导致循环依赖
典型触发场景
开发者总结了几个典型的触发场景:
- 服务类实现了 ApplicationListener 接口并直接注入 MongoTemplate
- 重写了 AbstractMongoClientConfiguration.getMappingBasePackages 方法,返回的包中包含 @Document 注解类
- 配置类位于项目的根包下
- 结合使用 WebSocket 和 MongoDB Session 存储时
解决方案
对于这个问题,Spring 团队给出了明确的解决方案:
1. 使用延迟注入
对于实现了 ApplicationListener 的服务类,应该避免直接注入 MongoTemplate,而是采用以下两种方式之一:
使用 ObjectProvider/ObjectFactory:
public ApplicationListenerServiceImpl(ObjectProvider<MongoTemplate> mongoTemplate) {
this.mongoTemplate = mongoTemplate.getObject();
}
使用 @Lazy 注解:
public ApplicationListenerServiceImpl(@Lazy MongoTemplate mongoTemplate) {
this.mongoTemplate = mongoTemplate;
}
2. 两种方式的区别
ObjectProvider/ObjectFactory 方式只是简单包装了目标 bean 的查找过程,而 @Lazy 注解方式则需要 Spring 创建代理对象。前者在性能和资源消耗上更为轻量。
3. 框架层面的改进
对于 Spring Session 中 AbstractSessionWebSocketMessageBrokerConfigurer 的非静态 ApplicationListener 声明导致的基础设施初始化问题,Spring 团队已经提交了改进方案。
最佳实践建议
- 尽量避免让业务服务类直接实现 ApplicationListener 接口,可以考虑使用事件监听器专用类
- 对于必须实现 ApplicationListener 的服务类,采用延迟注入策略
- 合理规划包结构,避免 @Document 类与 ApplicationListener 实现类混在同一个包下
- 在升级 Spring Boot 版本时,特别注意 2.7.12 版本引入的这一变化
总结
这个问题展示了 Spring 容器初始化顺序和依赖管理的重要性。理解 ApplicationListener 的特殊生命周期和合理使用延迟注入策略,是解决这类循环依赖问题的关键。对于框架使用者来说,遵循这些最佳实践可以避免类似的初始化问题,确保应用平稳运行。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00