LangGraph项目中处理大模型上下文长度限制的实践方案
2025-05-19 02:34:46作者:廉皓灿Ida
背景介绍
在使用LangGraph构建对话系统时,开发人员经常会遇到大模型上下文长度限制的问题。特别是在结合文档检索功能时,随着对话轮次的增加,系统会将历史对话中的文档检索结果(ToolMessage)不断累积到上下文中,最终导致超出模型的最大token限制。
问题分析
当使用LangGraph的Postgres检查点(checkpointer)功能时,系统会完整保存整个对话历史,包括所有的工具调用结果。每次对话时,这些历史记录都会被完整加载并作为上下文传递给大模型。对于文档检索这类会产生大量文本输出的工具操作,几轮对话后就很容易超出模型的上下文窗口限制。
解决方案
1. 对话历史管理策略
通过定制化的消息处理逻辑,可以有效地控制上下文长度。具体实现方式包括:
- 选择性保留历史消息:只保留最近几轮的关键对话,移除早期的非必要交互
- 工具消息精简:对文档检索结果进行摘要或截断处理,只保留最相关的部分
- 动态上下文窗口:根据当前对话需求动态调整保留的历史消息数量
2. 工具调用优化
对于文档检索这类工具,可以实施以下优化措施:
- 结果过滤:在工具内部对检索结果进行相关性排序和数量限制
- 内容摘要:对返回的文档内容自动生成简洁摘要而非完整文本
- 分页处理:将大型文档分批次返回,避免单次调用产生过多内容
3. 检查点定制
通过继承和修改PostgresSaver类,可以实现更灵活的检查点保存策略:
- 选择性序列化:不保存完整的工具调用结果,只保留必要的元数据
- 历史压缩:对保存的对话历史进行压缩或摘要处理
- 版本控制:实现不同粒度的历史版本管理,按需加载
实施建议
在实际项目中,建议采用分层策略:
- 基础层:实现简单的历史轮次限制,确保基本可用性
- 优化层:加入智能摘要和相关性过滤,提升上下文质量
- 高级层:实现动态上下文管理,根据对话复杂度自动调整
通过这种渐进式的优化路径,可以在保证系统功能完整性的同时,有效解决上下文长度限制问题,为用户提供更流畅的对话体验。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
425
3.26 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Ascend Extension for PyTorch
Python
231
264
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
19
30