深入理解Pytest中的测试项筛选与deselected钩子使用
2025-05-18 08:50:24作者:齐添朝
在Pytest测试框架的实际应用中,我们经常需要根据特定条件筛选测试用例。本文将深入探讨如何正确使用pytest_collection_modifyitems钩子和pytest_deselected钩子来实现这一功能,并分析常见的错误模式。
核心概念解析
Pytest提供了强大的钩子机制,允许开发者自定义测试收集和执行过程。其中两个关键钩子:
pytest_collection_modifyitems:在测试收集完成后调用,允许修改测试项列表pytest_deselected:用于通知框架哪些测试项被取消选择
常见错误模式分析
许多开发者会遇到类似以下的错误:
HookCaller.__call__() takes 1 positional argument but 2 were given
这通常是因为直接传递了位置参数给钩子调用。Pytest的钩子系统要求使用关键字参数,正确的调用方式应该是:
config.hook.pytest_deselected(items=do_not_run)
最佳实践实现
要实现基于标记的测试筛选,推荐以下实现方式:
def pytest_configure(config):
# 注册自定义标记
config.addinivalue_line(
"markers",
"requirement(jira_issue): 标记关联的Jira需求"
)
def filter_tests(items, condition):
"""通用测试项筛选函数"""
selected = []
deselected = []
for item in items:
(selected if condition(item) else deselected).append(item)
return selected, deselected
def pytest_collection_modifyitems(session, config, items):
req_tags = config.getoption("--requirements")
if req_tags:
tags = [t.strip() for t in req_tags.split(",")]
def is_wanted(item):
markers = item.iter_markers(name="requirement")
return any(m.args[0] in tags for m in markers)
selected, deselected = filter_tests(items, is_wanted)
items[:] = selected # 关键:原地修改items列表
config.hook.pytest_deselected(items=deselected)
关键点说明
- 原地修改原则:必须直接修改传入的items列表(使用切片赋值),而不是创建新列表
- 钩子调用规范:所有Pytest钩子调用都应使用关键字参数
- 标记处理:使用
item.iter_markers()可以获取测试项上的所有标记 - 条件判断:建议将筛选逻辑封装为独立函数,提高代码可读性
高级应用场景
这种模式可以扩展用于多种筛选场景:
- 基于测试重要性级别筛选
- 根据环境条件动态选择测试
- 实现测试用例的A/B分组执行
- 构建智能测试选择系统
总结
正确使用Pytest的钩子系统可以构建灵活强大的测试筛选机制。记住两个要点:必须原地修改items列表,以及钩子调用必须使用关键字参数。通过合理封装筛选逻辑,可以创建可维护性高、扩展性强的测试配置。
对于更复杂的场景,可以考虑结合Pytest的标记系统、参数化机制和钩子组合使用,构建完整的测试策略管理系统。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355