深入理解Pytest中的测试项筛选与deselected钩子使用
2025-05-18 23:56:22作者:齐添朝
在Pytest测试框架的实际应用中,我们经常需要根据特定条件筛选测试用例。本文将深入探讨如何正确使用pytest_collection_modifyitems
钩子和pytest_deselected
钩子来实现这一功能,并分析常见的错误模式。
核心概念解析
Pytest提供了强大的钩子机制,允许开发者自定义测试收集和执行过程。其中两个关键钩子:
pytest_collection_modifyitems
:在测试收集完成后调用,允许修改测试项列表pytest_deselected
:用于通知框架哪些测试项被取消选择
常见错误模式分析
许多开发者会遇到类似以下的错误:
HookCaller.__call__() takes 1 positional argument but 2 were given
这通常是因为直接传递了位置参数给钩子调用。Pytest的钩子系统要求使用关键字参数,正确的调用方式应该是:
config.hook.pytest_deselected(items=do_not_run)
最佳实践实现
要实现基于标记的测试筛选,推荐以下实现方式:
def pytest_configure(config):
# 注册自定义标记
config.addinivalue_line(
"markers",
"requirement(jira_issue): 标记关联的Jira需求"
)
def filter_tests(items, condition):
"""通用测试项筛选函数"""
selected = []
deselected = []
for item in items:
(selected if condition(item) else deselected).append(item)
return selected, deselected
def pytest_collection_modifyitems(session, config, items):
req_tags = config.getoption("--requirements")
if req_tags:
tags = [t.strip() for t in req_tags.split(",")]
def is_wanted(item):
markers = item.iter_markers(name="requirement")
return any(m.args[0] in tags for m in markers)
selected, deselected = filter_tests(items, is_wanted)
items[:] = selected # 关键:原地修改items列表
config.hook.pytest_deselected(items=deselected)
关键点说明
- 原地修改原则:必须直接修改传入的items列表(使用切片赋值),而不是创建新列表
- 钩子调用规范:所有Pytest钩子调用都应使用关键字参数
- 标记处理:使用
item.iter_markers()
可以获取测试项上的所有标记 - 条件判断:建议将筛选逻辑封装为独立函数,提高代码可读性
高级应用场景
这种模式可以扩展用于多种筛选场景:
- 基于测试重要性级别筛选
- 根据环境条件动态选择测试
- 实现测试用例的A/B分组执行
- 构建智能测试选择系统
总结
正确使用Pytest的钩子系统可以构建灵活强大的测试筛选机制。记住两个要点:必须原地修改items列表,以及钩子调用必须使用关键字参数。通过合理封装筛选逻辑,可以创建可维护性高、扩展性强的测试配置。
对于更复杂的场景,可以考虑结合Pytest的标记系统、参数化机制和钩子组合使用,构建完整的测试策略管理系统。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0361Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++087Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
191
2.15 K

React Native鸿蒙化仓库
C++
205
284

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

Ascend Extension for PyTorch
Python
58
89

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
968
572

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
547
76

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
192

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
392
23