PyKAN项目中的KAN模型性能基准测试分析
引言
在机器学习领域,Kolmogorov-Arnold Networks(KAN)作为一种新兴的神经网络架构,近年来受到了广泛关注。本文基于PyKAN项目中的性能基准测试结果,对几种不同实现的KAN模型进行了深入分析,包括运行时间和内存使用效率等方面的比较。
测试环境与方法
测试在一台配备NVIDIA A5000 GPU的设备上进行,主要对比了以下几种模型实现:
- 高效KAN实现(effkan-gpu)
- 傅里叶KAN实现(fourierkan-gpu)
- 融合傅里叶KAN实现(fusedfourierkan-gpu)
- 传统MLP实现(mlp-gpu)
测试配置为输入维度1000,隐藏层维度1000(MLP为10000以保证参数量相近),输出维度1,批处理大小为100。所有结果均为5次运行的平均值。
性能测试结果
| 模型类型 | 前向传播时间 | 反向传播时间 | 前向内存使用 | 反向内存使用 | 参数量 | 可训练参数量 |
|---|---|---|---|---|---|---|
| 高效KAN | 3.29ms | 4.07ms | 0.13GB | 0.19GB | 10010000 | 10010000 |
| 傅里叶KAN | 18.07ms | 14.55ms | 1.96GB | 2.01GB | 10011001 | 10011001 |
| 融合傅里叶KAN | 29.01ms | 2201.59ms | 0.09GB | 0.13GB | 10011001 | 10011001 |
| MLP | 0.47ms | 1.08ms | 0.10GB | 0.13GB | 10020001 | 10020001 |
结果分析
-
运行效率:高效KAN实现表现最佳,前向传播时间仅为3.29ms,反向传播4.07ms,约为传统MLP的4倍耗时。傅里叶KAN实现耗时明显更长,而融合傅里叶KAN的反向传播时间异常高,经分析是由于其反向传播仅使用了一个线程块所致。
-
内存效率:融合傅里叶KAN在内存使用上表现最优,前向传播仅需0.09GB内存,反向传播0.13GB。高效KAN的内存使用也较为合理,而傅里叶KAN的内存消耗显著高于其他实现。
-
参数对比:所有KAN实现的参数量相近,MLP由于结构差异,隐藏层维度设为10000以达到相近的参数量。
技术实现差异
不同KAN实现的核心差异在于其数学表达和计算优化:
-
高效KAN:采用了优化的计算图结构和内存管理策略,在保持KAN特性的同时提升了计算效率。
-
傅里叶KAN:基于傅里叶变换实现,理论上具有更强的函数逼近能力,但计算复杂度较高。
-
融合傅里叶KAN:尝试通过融合计算来优化性能,但当前反向传播实现存在瓶颈。
结论与建议
测试结果表明,高效KAN实现是目前最成熟的KAN优化版本,在保持KAN特性的同时,性能接近传统MLP的1/4。对于实际应用场景,建议:
- 优先考虑高效KAN实现,在性能和功能间取得较好平衡
- 关注融合傅里叶KAN的未来优化,特别是反向传播的并行计算改进
- 在内存受限场景下,融合傅里叶KAN的低内存特性可能成为优势
KAN模型作为一种新兴架构,其性能优化仍有很大空间,期待未来出现更多高效的实现方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00