PyKAN项目中的KAN模型性能基准测试分析
引言
在机器学习领域,Kolmogorov-Arnold Networks(KAN)作为一种新兴的神经网络架构,近年来受到了广泛关注。本文基于PyKAN项目中的性能基准测试结果,对几种不同实现的KAN模型进行了深入分析,包括运行时间和内存使用效率等方面的比较。
测试环境与方法
测试在一台配备NVIDIA A5000 GPU的设备上进行,主要对比了以下几种模型实现:
- 高效KAN实现(effkan-gpu)
- 傅里叶KAN实现(fourierkan-gpu)
- 融合傅里叶KAN实现(fusedfourierkan-gpu)
- 传统MLP实现(mlp-gpu)
测试配置为输入维度1000,隐藏层维度1000(MLP为10000以保证参数量相近),输出维度1,批处理大小为100。所有结果均为5次运行的平均值。
性能测试结果
| 模型类型 | 前向传播时间 | 反向传播时间 | 前向内存使用 | 反向内存使用 | 参数量 | 可训练参数量 |
|---|---|---|---|---|---|---|
| 高效KAN | 3.29ms | 4.07ms | 0.13GB | 0.19GB | 10010000 | 10010000 |
| 傅里叶KAN | 18.07ms | 14.55ms | 1.96GB | 2.01GB | 10011001 | 10011001 |
| 融合傅里叶KAN | 29.01ms | 2201.59ms | 0.09GB | 0.13GB | 10011001 | 10011001 |
| MLP | 0.47ms | 1.08ms | 0.10GB | 0.13GB | 10020001 | 10020001 |
结果分析
-
运行效率:高效KAN实现表现最佳,前向传播时间仅为3.29ms,反向传播4.07ms,约为传统MLP的4倍耗时。傅里叶KAN实现耗时明显更长,而融合傅里叶KAN的反向传播时间异常高,经分析是由于其反向传播仅使用了一个线程块所致。
-
内存效率:融合傅里叶KAN在内存使用上表现最优,前向传播仅需0.09GB内存,反向传播0.13GB。高效KAN的内存使用也较为合理,而傅里叶KAN的内存消耗显著高于其他实现。
-
参数对比:所有KAN实现的参数量相近,MLP由于结构差异,隐藏层维度设为10000以达到相近的参数量。
技术实现差异
不同KAN实现的核心差异在于其数学表达和计算优化:
-
高效KAN:采用了优化的计算图结构和内存管理策略,在保持KAN特性的同时提升了计算效率。
-
傅里叶KAN:基于傅里叶变换实现,理论上具有更强的函数逼近能力,但计算复杂度较高。
-
融合傅里叶KAN:尝试通过融合计算来优化性能,但当前反向传播实现存在瓶颈。
结论与建议
测试结果表明,高效KAN实现是目前最成熟的KAN优化版本,在保持KAN特性的同时,性能接近传统MLP的1/4。对于实际应用场景,建议:
- 优先考虑高效KAN实现,在性能和功能间取得较好平衡
- 关注融合傅里叶KAN的未来优化,特别是反向传播的并行计算改进
- 在内存受限场景下,融合傅里叶KAN的低内存特性可能成为优势
KAN模型作为一种新兴架构,其性能优化仍有很大空间,期待未来出现更多高效的实现方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00