PyKAN项目中的KAN模型性能基准测试分析
引言
在机器学习领域,Kolmogorov-Arnold Networks(KAN)作为一种新兴的神经网络架构,近年来受到了广泛关注。本文基于PyKAN项目中的性能基准测试结果,对几种不同实现的KAN模型进行了深入分析,包括运行时间和内存使用效率等方面的比较。
测试环境与方法
测试在一台配备NVIDIA A5000 GPU的设备上进行,主要对比了以下几种模型实现:
- 高效KAN实现(effkan-gpu)
- 傅里叶KAN实现(fourierkan-gpu)
- 融合傅里叶KAN实现(fusedfourierkan-gpu)
- 传统MLP实现(mlp-gpu)
测试配置为输入维度1000,隐藏层维度1000(MLP为10000以保证参数量相近),输出维度1,批处理大小为100。所有结果均为5次运行的平均值。
性能测试结果
模型类型 | 前向传播时间 | 反向传播时间 | 前向内存使用 | 反向内存使用 | 参数量 | 可训练参数量 |
---|---|---|---|---|---|---|
高效KAN | 3.29ms | 4.07ms | 0.13GB | 0.19GB | 10010000 | 10010000 |
傅里叶KAN | 18.07ms | 14.55ms | 1.96GB | 2.01GB | 10011001 | 10011001 |
融合傅里叶KAN | 29.01ms | 2201.59ms | 0.09GB | 0.13GB | 10011001 | 10011001 |
MLP | 0.47ms | 1.08ms | 0.10GB | 0.13GB | 10020001 | 10020001 |
结果分析
-
运行效率:高效KAN实现表现最佳,前向传播时间仅为3.29ms,反向传播4.07ms,约为传统MLP的4倍耗时。傅里叶KAN实现耗时明显更长,而融合傅里叶KAN的反向传播时间异常高,经分析是由于其反向传播仅使用了一个线程块所致。
-
内存效率:融合傅里叶KAN在内存使用上表现最优,前向传播仅需0.09GB内存,反向传播0.13GB。高效KAN的内存使用也较为合理,而傅里叶KAN的内存消耗显著高于其他实现。
-
参数对比:所有KAN实现的参数量相近,MLP由于结构差异,隐藏层维度设为10000以达到相近的参数量。
技术实现差异
不同KAN实现的核心差异在于其数学表达和计算优化:
-
高效KAN:采用了优化的计算图结构和内存管理策略,在保持KAN特性的同时提升了计算效率。
-
傅里叶KAN:基于傅里叶变换实现,理论上具有更强的函数逼近能力,但计算复杂度较高。
-
融合傅里叶KAN:尝试通过融合计算来优化性能,但当前反向传播实现存在瓶颈。
结论与建议
测试结果表明,高效KAN实现是目前最成熟的KAN优化版本,在保持KAN特性的同时,性能接近传统MLP的1/4。对于实际应用场景,建议:
- 优先考虑高效KAN实现,在性能和功能间取得较好平衡
- 关注融合傅里叶KAN的未来优化,特别是反向传播的并行计算改进
- 在内存受限场景下,融合傅里叶KAN的低内存特性可能成为优势
KAN模型作为一种新兴架构,其性能优化仍有很大空间,期待未来出现更多高效的实现方案。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~050CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0305- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









