IREE项目中消除冗余编码调度的优化方案
背景介绍
在IREE编译器项目中,数据平铺(data-tiling)技术在某些情况下会导致性能下降,特别是当后端不支持数据平铺时。问题的核心在于set/unset_encoding操作会被单独分派(dispatch),形成额外的内核启动和冗余数据拷贝。本文将详细介绍IREE团队如何通过引入新的编码操作和优化流程来解决这一问题。
问题分析
当后端不支持数据平iling时,现有的实现会产生以下性能问题:
- set_encoding和unset_encoding操作会被单独分派
- 每个分派都会导致额外的内核启动
- 产生冗余的数据拷贝操作
- 影响延迟物化(late materialization)路径的性能
解决方案架构
团队设计了一套完整的解决方案,主要包括以下几个关键步骤:
1. 引入新的编码操作
新增了两个核心操作:
- flow.tensor.encode:高层级的编码操作
- stream.tensor.encode:流级别的编码操作
2. 建立直接降级路径
实现了从flow.tensor.encode到stream.tensor.encode的直接降级路径,确保编码操作能够高效地在不同抽象层级间传递。
3. 转换现有分派操作
将现有的set_encoding分派操作转换为flow.tensor.encode操作,为后续优化创造条件。
4. 实现MaterializeEncoding传递
在流级别引入了MaterializeEncoding传递,位于EncodeHostTensors传递之后。该传递的核心功能包括:
- 执行编码特化
- 解析最终布局
- 当张量编码产生相同布局时,折叠掉冗余操作
5. 布局一致性检查
引入isSameLayout方法作为编码属性接口的一部分,用于判断编码前后布局是否发生变化,从而决定是否可以消除冗余操作。
实现细节
在实现过程中,团队遇到并解决了一些技术挑战:
-
亲和性属性处理:新操作需要添加到AffinityOpAttrExternalModel列表中,否则会导致亲和性分析失败。这揭示了现有架构中关于操作亲和性处理的文档不足问题。
-
编码取消逻辑:不仅需要处理set_encoding操作,还需要处理unset_encoding操作,特别是在GlobalOpt阶段设置的编码。
-
接口设计:引入了isIdentityLayout接口方法,用于判断编码是否实际改变了数据布局。
性能影响
通过这一系列优化,实现了以下效果:
- 当编码解析器属性不在配置中时,AMDGPU后端能够自动取消冗余编码操作
- 保持了对CPU后端的兼容性
- 减少了不必要的内核启动和数据拷贝
- 为未来完全支持数据平铺融合奠定了基础
未来工作
虽然当前方案已经解决了核心问题,但团队还规划了进一步的改进:
- 清理依赖:计划将代码生成对flow dialect的依赖迁移到专门的TensorExt dialect中
- 文档完善:增强关于操作亲和性处理的文档,帮助开发者更好地理解和使用相关功能
- 接口统一:可能考虑引入专门的trait来标记支持亲和性分析的操作
结论
IREE团队通过引入新的编码操作和优化流程,有效地解决了数据平铺在不支持后端上的性能问题。这一方案不仅解决了当前的性能瓶颈,还为未来的功能扩展奠定了良好的基础,展示了IREE编译器在性能优化方面的持续创新。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00