Disp R-CNN:基于形状先验引导的立体3D目标检测
项目介绍
Disp R-CNN 是一个基于形状先验引导的立体3D目标检测框架,由浙江大学和商汤科技联合实验室开发。该项目在CVPR 2020和T-PAMI 2021上发表,并提供了完整的代码实现。Disp R-CNN通过形状先验引导的实例视差估计,显著提升了立体图像中3D目标检测的准确性和鲁棒性。
项目技术分析
技术架构
Disp R-CNN的核心技术在于其独特的形状先验引导机制。该机制通过结合深度学习和几何先验知识,有效地解决了立体图像中3D目标检测的难题。具体来说,Disp R-CNN利用形状先验信息来指导实例视差估计,从而提高了检测的精度和稳定性。
技术实现
项目基于PyTorch 1.2.0开发,支持Ubuntu 16.04及以上版本的操作系统。为了确保高效的训练和推理,项目推荐使用至少8块显存大于12GB的Nvidia GPU。此外,项目还依赖于GCC 4.9及以上版本和Python 3.7及以上版本。
安装与配置
安装过程相对简单,用户只需按照以下步骤操作:
# 安装webp支持
sudo apt install libwebp-dev
# 克隆仓库
git clone https://github.com/zju3dv/disprcnn.git
cd disprcnn
# 创建并激活conda环境
conda env create -f environment.yaml
conda activate disprcnn
# 安装Disp R-CNN
sh build_and_install.sh
项目及技术应用场景
应用场景
Disp R-CNN在多个领域具有广泛的应用前景,特别是在自动驾驶、机器人导航和增强现实等领域。例如,在自动驾驶中,准确的目标检测是实现安全驾驶的关键;在机器人导航中,3D目标检测可以帮助机器人更好地理解周围环境;在增强现实中,精确的3D目标检测可以提升用户体验。
技术优势
- 高精度检测:通过形状先验引导,Disp R-CNN在立体图像中的3D目标检测精度显著提升。
- 鲁棒性强:项目在多种复杂场景下表现出色,具有较强的鲁棒性。
- 易于集成:基于PyTorch开发,便于与其他深度学习框架集成。
项目特点
开源与社区支持
Disp R-CNN是一个开源项目,用户可以自由下载、使用和修改代码。项目团队还提供了详细的文档和示例,帮助用户快速上手。此外,项目团队积极响应社区反馈,不断优化和更新代码。
持续更新
项目团队定期发布更新,包括新的数据集、训练模型和结果。最新版本的数据和模型已经发布,用户可以随时获取最新的技术进展。
学术与工业结合
Disp R-CNN不仅在学术界获得了广泛认可,还在工业界得到了实际应用。项目团队与多家企业合作,推动了技术的产业化进程。
结语
Disp R-CNN是一个具有创新性和实用性的3D目标检测框架,通过形状先验引导的实例视差估计,显著提升了立体图像中3D目标检测的性能。无论你是学术研究者还是工业开发者,Disp R-CNN都值得你一试。快来体验这一前沿技术,开启你的3D目标检测之旅吧!
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00