sphereface-plus 的安装和配置教程
2025-05-27 13:51:01作者:宣聪麟
项目基础介绍和主要编程语言
SphereFace+ 是一个用于人脸识别的开源项目,基于 SphereFace 模型,通过应用最小超球能量(MHE)损失函数改进了类间特征的可分性。该项目的主要编程语言是 Python 和 MATLAB,涉及到深度学习框架 Caffe 的使用。
项目使用的关键技术和框架
SphereFace+ 使用的关键技术包括:
- 最小超球能量(MHE)损失函数:用于增强类间特征的可分性。
- 深度学习模型:利用 Caffe 框架训练网络模型。
- MTCNN:用于人脸检测和对齐。
- MATLAB:用于图像处理和特征提取。
使用的框架和工具包括:
- Caffe:一个开源的深度学习框架。
- MATLAB:数学计算和图像处理软件。
- MTCNN:一个开源的人脸检测和特征点定位模型。
项目安装和配置的准备工作
在开始安装 SphereFace+ 之前,请确保您的系统已经安装以下软件和依赖项:
- CUDA 8.0 for Linux
- cuDNN v6.0 (与 CUDA 8.0 兼容)
- MATLAB
- Caffe 和 matcaffe(请参考 Caffe 官方安装指南)
- MTCNN 和 Pdollar 工具箱(请参考相关文档进行安装)
请注意,使用与上述版本不兼容的 CUDA 或 cuDNN 版本可能会导致训练过程频繁失败。
项目安装步骤
克隆项目仓库
首先,您需要克隆 SphereFace-Plus 的 GitHub 仓库:
git clone --recursive https://github.com/wy1iu/sphereface-plus.git
构建和安装 Caffe
进入克隆的 SphereFace-Plus 目录中的 tools/caffe-sphereface 文件夹:
cd path_to_sphereface-plus/tools/caffe-sphereface
然后,按照 Caffe 官方指南构建 Caffe:
make all -j8
make matcaffe
安装 MTCNN 和 Pdollar 工具箱
请根据 MTCNN 和 Pdollar 工具箱的官方文档进行安装。
下载和放置数据集
下载 CASIA-WebFace 和 LFW 数据集,并将其放置在项目的 data/ 目录下。
运行预处理
使用 MTCNN 检测人脸和面部标记,然后使用 MATLAB 脚本进行对齐:
# 在 MATLAB 命令窗口中运行以下脚本
path_to_sphereface-plus/preprocess/code/face_detect_demo.m
path_to_sphereface-plus/preprocess/code/face_align_demo.m
训练模型
将预处理后的图像移动到训练目录,并获取图像列表:
mv path_to_sphereface-plus/preprocess/result/CASIA-WebFace-112X96 path_to_sphereface-plus/train/data/
# 在 MATLAB 命令窗口中运行以下脚本
path_to_sphereface-plus/train/code/get_list.m
下载预训练模型并放置在 train/pretrained_model/ 目录下。
然后,运行训练脚本:
bash path_to_sphereface-plus/train/train_sfplus.sh
测试模型
将处理后的 LFW 数据集移动到测试目录,并运行测试脚本:
mv path_to_sphereface-plus/preprocess/result/lfw-112X96 path_to_sphereface-plus/test/data/
bash path_to_sphereface-plus/test/code/get_pairs.sh
matlab -nodisplay -nodesktop -r evaluation
以上步骤将帮助您成功安装和配置 SphereFace+ 项目。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.31 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
697
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
676
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328