LaVague项目中LLM指令重写模块的优化与问题解决
2025-06-04 17:03:00作者:魏献源Searcher
引言
在LaVague项目开发过程中,我们发现了一个影响WebAgent稳定性的关键问题:当使用不同的大语言模型(LLM)进行指令重写时,系统会抛出"string indices must be integers, not 'str'"的错误。这个问题暴露了指令重写模块在处理LLM输出时的脆弱性,本文将深入分析问题原因并提供解决方案。
问题背景
LaVague是一个基于大语言模型的Web自动化框架,其核心功能是将自然语言指令转换为可执行的Web操作。在这个过程中,指令重写模块(Rephraser)负责将用户输入的自然语言指令标准化为结构化格式。
问题现象
开发团队在使用不同LLM模型时发现了以下问题表现:
- 错误信息:"string indices must be integers, not 'str'"
- 问题主要出现在指令重写阶段
- 影响多个模型,包括HuggingFaceH4/zephyr-7b-alpha、Phi-3-medium-128k-instruct和llama3-8b等
根本原因分析
经过深入调查,我们发现问题的根源在于:
- LLM输出格式不一致:不同模型对提示词(Prompt)的响应方式不同,导致输出格式不符合预期
- 正则表达式匹配不足:原有的正则表达式会捕获第一个
[和最后一个]之间的所有内容,包括LLM可能输出的额外解释文本 - 结构化数据解析失败:当LLM输出不符合预期格式时,后续对action字典的访问会失败
解决方案
针对上述问题,我们实施了以下改进措施:
1. 提示词工程优化
我们重新设计了提示词模板,增加了更清晰的示例和格式要求:
REPHRASE_PROMPT = Template(
"""
You are an AI system designed to convert text-based instructions for web actions into standardized instructions.
KEY INSTRUCTIONS:
Here are previous examples:
Query: Type 'Command R plus' on the search bar with placeholder "Search ..."
Output: [{'query':'input"Search ..."', 'action':'Click on the input "Search ..." and type "Command R plus"'}]...
"""
)
2. 正则表达式精确匹配
我们改进了正则表达式,使其只匹配第一个[和紧接着的]之间的内容,避免捕获LLM可能输出的额外解释文本:
# 旧的正则表达式:匹配第一个[和最后一个]之间的所有内容
# 新的正则表达式:只匹配第一个[和紧接着的]之间的内容
3. 输出格式验证
增加了对LLM输出格式的验证逻辑,确保解析出的数据结构符合预期格式:
if not isinstance(actions, list):
raise ValueError("LLM output format error: expected list of actions")
for action in actions:
if not all(key in action for key in ['query', 'action']):
raise ValueError("LLM output format error: missing required keys")
实施效果
经过上述改进后:
- 系统能够稳定处理不同LLM的输出
- 错误率显著降低
- 提高了框架对不同LLM的兼容性
经验总结
在开发基于LLM的应用时,我们需要特别注意:
- 提示词设计:清晰的示例和格式要求对LLM输出质量至关重要
- 输出处理:需要假设LLM可能输出任何内容,做好防御性编程
- 模型兼容性:不同LLM的行为差异很大,需要进行充分测试
结论
通过这次问题解决,我们不仅修复了一个关键bug,还提升了LaVague框架的鲁棒性。这为后续支持更多LLM模型打下了良好基础,也为我们积累了宝贵的LLM应用开发经验。未来我们将继续优化提示词设计和输出处理逻辑,进一步提高系统的稳定性和可靠性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Python小说下载神器:一键获取番茄小说完整内容如何用md2pptx快速将Markdown文档转换为专业PPT演示文稿 📊京东评价自动化工具:用Python脚本解放双手的高效助手三步掌握Payload-Dumper-Android:革新性OTA提取工具的核心价值定位终极Obsidian模板配置指南:10个技巧打造高效个人知识库终极指南:5步解锁Rockchip RK3588全部潜力,快速上手Ubuntu 22.04操作系统WebPlotDigitizer 安装配置指南:从图像中提取数据的开源工具终极FDS入门指南:5步掌握火灾动力学模拟技巧高效获取无损音乐:跨平台FLAC音乐下载工具全解析终极指南:5步复现Spring Boot高危漏洞CVE-2016-1000027
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
528
3.73 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
172
Ascend Extension for PyTorch
Python
338
401
React Native鸿蒙化仓库
JavaScript
302
353
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
884
590
暂无简介
Dart
769
191
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
139
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
246