SuperSocket中组合使用BeginEndMarkPipelineFilter和CommandLinePipelineFilter的实践
在SuperSocket框架中,BeginEndMarkPipelineFilter和CommandLinePipelineFilter是两种常用的消息过滤器,它们各自有不同的应用场景。本文将探讨如何在实际项目中组合使用这两种过滤器来处理特定格式的网络协议消息。
协议格式分析
假设我们有一个网络协议的消息格式如下:
<STX>01,Hello World<ETX>
其中:
<STX>是消息开始标记(ASCII码0x02)<ETX>是消息结束标记(ASCII码0x03)- "01"是命令标识符
- "Hello World"是消息内容
单独使用BeginEndMarkPipelineFilter
BeginEndMarkPipelineFilter非常适合处理这种带有明确开始和结束标记的消息。配置后,它会自动去除STX和ETX标记,只保留中间的"01,Hello World"部分。
// 配置BeginEndMarkPipelineFilter
var filter = new BeginEndMarkPipelineFilter<TextPackageInfo>(
new byte[] { 0x02 }, // STX
new byte[] { 0x03 } // ETX
);
组合使用CommandLinePipelineFilter的需求
虽然BeginEndMarkPipelineFilter能很好地提取消息体,但如果我们还想进一步解析消息体中的命令标识符和参数(如"01"和"Hello World"),可以考虑组合使用CommandLinePipelineFilter。
实现方案
-
自定义过滤器:可以创建一个继承自BeginEndMarkPipelineFilter的自定义过滤器,在其基础上实现类似CommandLinePipelineFilter的功能。
-
管道串联:在SuperSocket的管道处理中,可以设计多个过滤器串联工作,前一个过滤器的输出作为下一个过滤器的输入。
public class CustomFilter : BeginEndMarkPipelineFilter<TextPackageInfo>
{
public CustomFilter()
: base(new byte[] { 0x02 }, new byte[] { 0x03 })
{
}
protected override TextPackageInfo DecodePackage(ref ReadOnlySequence<byte> buffer)
{
var package = base.DecodePackage(ref buffer);
if (package != null)
{
// 在这里实现类似CommandLinePipelineFilter的解析逻辑
var parts = package.Text.Split(',', 2);
if (parts.Length == 2)
{
return new TextPackageInfo
{
Key = parts[0],
Text = parts[1]
};
}
}
return package;
}
}
注意事项
-
消息体格式:确保消息体中不包含CRLF(\r\n)字符,否则会影响解析。
-
性能考虑:组合使用多个过滤器会增加一定的处理开销,需要评估是否真的有必要。
-
错误处理:需要完善错误处理机制,确保在消息格式不符合预期时能够正确处理。
结论
在SuperSocket中,通过合理设计自定义过滤器,可以有效地组合BeginEndMarkPipelineFilter和CommandLinePipelineFilter的功能,处理带有开始结束标记且内部结构符合命令行格式的消息。这种组合方式既保留了原始消息的边界识别能力,又增加了对消息内容的进一步解析功能,为复杂协议的处理提供了灵活解决方案。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00