解决Hugging Face Hub私有仓库存储配额错误问题
在使用Hugging Face Hub进行私有数据集仓库推送时,用户可能会遇到"Private repository storage limit reached"的错误提示,但实际检查配额显示仍有充足空间。这种情况通常是由于系统内部配额计算机制出现问题导致的。
问题现象
当用户尝试向私有数据集仓库推送内容时,系统返回403 Forbidden错误,提示私有仓库存储限制已满,需要升级计划。然而,在Hugging Face用户界面检查组织配额时,显示实际使用量远低于配额上限(例如61GB/100GB)。
用户通过huggingface_hub库的API手动计算LFS文件总大小时,也确认实际使用量并未达到配额限制。这种配额显示与实际限制不符的情况会导致用户无法正常使用私有仓库功能。
问题根源
经过Hugging Face团队调查,发现这是由于系统内部的一个bug导致的。当用户同时上传多个文件时,系统会错误地进行双重计数,导致配额计算不准确。这种双重计数机制使得系统误判用户已超出配额限制,从而阻止新的上传操作。
解决方案
Hugging Face团队已经部署了修复程序,解决了文件同时上传时的双重计数问题。修复后,系统能够正确计算实际使用的存储空间,不会再出现配额误判的情况。
对于遇到此问题的用户,可以采取以下步骤:
- 确认是否确实存在配额计算错误(通过UI和API双重验证)
- 如果是小批量上传,可能不会触发此bug,可以尝试分批上传
- 等待系统修复部署完成(通常会自动生效)
技术验证方法
用户可以通过以下Python代码验证实际LFS文件使用量:
from huggingface_hub import HfApi
api = HfApi()
lfsfiles = list(api.list_lfs_files("your_repo_id", repo_type="dataset"))
total_size = sum(map(lambda x: x.size, lfsfiles))
print(f"Total LFS storage used: {total_size} bytes")
这个方法可以帮助用户确认实际存储使用情况,与UI显示的配额进行比对,判断是否存在计算错误。
总结
存储配额计算错误是分布式系统中常见的边缘情况问题。Hugging Face团队对此类问题的快速响应和修复体现了其对平台稳定性的重视。用户在遇到类似问题时,可以通过官方渠道反馈,同时使用API进行交叉验证,以确定是系统问题还是实际配额不足。
对于需要大规模文件上传的用户,建议采用分批上传策略,这不仅能避免触发系统边缘情况,也能提高上传的可靠性和稳定性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-X1-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00