Alist项目中实现115网盘自定义客户端授权的方法
115网盘作为国内知名的云存储服务,其API授权机制一直是开发者关注的焦点。本文将详细介绍如何在Alist项目中实现使用自定义客户端进行115网盘授权的方法。
115网盘授权机制解析
115网盘采用OAuth 2.0授权框架,与阿里云OpenAPI类似,开发者可以通过注册应用获取AppID和AppKey来进行授权。这种机制允许开发者创建自己的客户端应用,而不是依赖官方提供的固定凭证。
授权流程主要包含以下几个关键步骤:
- 生成code_verifier和code_challenge
- 获取设备码和二维码内容
- 用户扫码确认授权
- 使用code_verifier换取access_token
实现自定义授权的技术方案
核心代码实现
以下是实现115网盘自定义授权的Python代码示例:
import requests
import hashlib
import base64
import secrets
import qrcode
from io import BytesIO
from PIL import Image
# 配置你的APP ID
APP_ID = "your_app_id_here"
# 115网盘API端点
DEVICE_CODE_URL = "https://passportapi.115.com/open/authDeviceCode"
ACCESS_TOKEN_URL = "https://passportapi.115.com/open/deviceCodeToToken"
def generate_code_verifier_and_challenge():
"""生成PKCE所需的code_verifier和code_challenge"""
code_verifier = secrets.token_urlsafe(64)
code_challenge = base64.urlsafe_b64encode(
hashlib.sha256(code_verifier.encode('utf-8')).digest()
).decode('utf-8').rstrip('=')
return code_verifier, code_challenge
def get_device_code(code_verifier, code_challenge):
"""获取设备授权码"""
headers = {'Content-Type': 'application/x-www-form-urlencoded'}
data = {
'client_id': APP_ID,
'code_challenge': code_challenge,
'code_challenge_method': 'sha256'
}
response = requests.post(DEVICE_CODE_URL, headers=headers, data=data)
response.raise_for_status()
return response.json()
授权流程详解
-
初始化阶段:生成PKCE(Proof Key for Code Exchange)所需的code_verifier和code_challenge。这是OAuth 2.0的安全增强机制,防止授权码被截获滥用。
-
获取设备码:向115网盘服务器请求设备授权码,服务器会返回包含二维码内容的数据。
-
用户交互:将二维码展示给用户,用户需要使用115官方客户端扫描并确认授权。
-
令牌交换:使用之前生成的code_verifier换取access_token,完成整个授权流程。
常见问题解决方案
在实现过程中,开发者可能会遇到"code_verifier验证失败"的错误。这通常由以下原因导致:
-
code_verifier不匹配:确保在获取设备码和交换令牌时使用相同的code_verifier。
-
编码问题:code_verifier和code_challenge的生成必须严格按照规范,特别注意URL安全的Base64编码。
-
超时问题:设备码通常有较短的有效期,如果用户未及时确认,需要重新发起流程。
集成到Alist项目的建议
要将此授权机制集成到Alist项目中,可以考虑以下架构:
-
前端界面:添加115自定义授权选项,提供二维码展示区域。
-
后端服务:实现授权码管理,包括存储和验证code_verifier。
-
令牌管理:将获取的access_token安全存储,并实现自动刷新机制。
-
错误处理:完善各种异常情况的处理逻辑,提供友好的用户提示。
通过这种方式,Alist用户可以灵活地使用自己的115客户端凭证,而不必依赖项目维护者提供的统一授权方案,既提高了安全性,也增加了使用的灵活性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00