OpenBMB/OmniLMM项目中特殊标记(Special Token)的正确使用方法
2025-05-11 23:52:36作者:龚格成
在大型语言模型的实际应用中,特殊标记(Special Token)的使用是一个常见但容易被忽视的技术细节。本文将以OpenBMB/OmniLMM项目为例,深入探讨特殊标记的两种实现方式及其技术原理。
特殊标记的作用与重要性
特殊标记在语言模型中扮演着关键角色,它们通常用于表示特定的语义或结构信息。在OpenBMB/OmniLMM这类多模态大模型中,特殊标记可能用于标记文本段落的分隔、多模态数据的边界,或者特定任务的指令信号。
两种实现方式的技术解析
动态添加方式
第一种实现方式是通过代码动态添加特殊标记,这是目前推荐的做法。具体实现如下:
tokenizer = AutoTokenizer.from_pretrained(model_args.tokenizer_name_or_path, trust_remote_code=True)
model = AutoModelForCausalLM.from_pretrained(model_args.model_name_or_path, trust_remote_code=True)
split_token = AddedToken("<|spilt_label|>")
tokenizer.add_special_tokens(split_token)
这种方式的技术优势在于:
- 灵活性高:可以在运行时根据需要动态添加特殊标记
- 可维护性强:代码中明确显示了标记的添加过程
- 兼容性好:不会影响原始tokenizer的配置
配置文件修改方式
第二种方式是通过直接修改tokenizer_config文件,将预留标记替换为需要的特殊标记。这种方式虽然也能达到目的,但存在以下问题:
- 侵入性强:直接修改配置文件可能影响其他部分的逻辑
- 可追溯性差:修改行为不会在代码中体现
- 维护困难:当配置文件更新时可能导致冲突
最佳实践建议
基于OpenBMB/OmniLMM项目的推荐做法,开发者应当优先考虑使用动态添加方式。这种方式不仅符合现代软件工程的原则,还能带来以下好处:
- 版本控制友好:所有修改都体现在代码中
- 可测试性强:可以方便地编写单元测试验证标记添加逻辑
- 部署灵活:不同环境可以使用不同的特殊标记配置
对于需要长期使用的特殊标记,建议在模型训练阶段就将其加入词汇表,而不是在推理阶段动态添加,这样可以获得更好的模型性能。
技术原理深入
特殊标记的处理背后涉及tokenizer的工作原理。现代tokenizer通常使用子词(subword)算法,如BPE、WordPiece等。当添加新标记时,tokenizer需要:
- 为新标记分配唯一的token ID
- 更新词汇表和相关数据结构
- 确保模型能够正确处理这些新标记
动态添加方式通过标准API完成这些操作,而直接修改配置文件可能绕过某些必要的内部处理流程,导致潜在问题。
总结
在OpenBMB/OmniLMM等大型语言模型项目中,正确使用特殊标记对模型性能和应用效果至关重要。通过本文的分析,开发者应该能够理解为何动态添加方式是更优的选择,并在实际项目中应用这一最佳实践。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
246
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
313
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
330
137