GitHub Actions Runner中Docker守护进程连接问题的解决方案
问题背景
在使用GitHub Actions Runner的自托管环境中构建Docker镜像时,许多开发者会遇到一个常见问题:"Cannot connect to the Docker daemon at unix:///var/run/docker.sock"。这个错误表明Runner无法连接到Docker守护进程,导致构建和推送Docker镜像的操作失败。
问题分析
当使用自托管的GitHub Actions Runner时,Runner容器默认不包含Docker守护进程。虽然Runner容器可能安装了Docker客户端工具,但缺少运行中的Docker守护进程会导致所有Docker操作失败。
错误信息中显示:
Cannot connect to the Docker daemon at unix:///var/run/docker.sock. Is the docker daemon running?
这明确指出了问题的根源——Docker守护进程没有运行或者Runner无法访问它。
解决方案
使用DinD(Docker in Docker)模式
最有效的解决方案是在Runner容器旁边运行一个DinD(Docker in Docker)容器作为sidecar。DinD容器专门用于提供Docker守护进程服务。
具体配置方法如下:
-
在Helm chart中启用DinD模式: 在Runner的配置中设置containerMode为DinD类型:
containerMode: type: DinD -
添加DinD容器作为sidecar: 在Runner的Pod规范中添加DinD容器:
spec: containers: - name: runner image: custom-registry/actions-runner:2.320.0 command: ["/home/runner/run.sh"] - name: dind image: custom-registry/arc:dind args: - dockerd - --host=unix:///var/run/docker.sock
为什么DinD方案有效
DinD方案之所以有效,是因为它:
- 提供了一个独立的Docker守护进程环境
- 通过Unix套接字(/var/run/docker.sock)暴露Docker API
- 与Runner容器共享网络和存储空间
- 保持了与主机系统Docker的隔离性
实施建议
- 镜像选择:建议使用官方维护的DinD镜像,确保稳定性和安全性
- 资源分配:为DinD容器分配足够的CPU和内存资源,特别是当构建大型镜像时
- 版本兼容:确保DinD容器中的Docker版本与Runner中安装的Docker客户端版本兼容
- 安全考虑:在共享环境中使用时,注意DinD容器的安全配置,避免潜在的安全风险
替代方案
除了DinD方案外,还可以考虑:
-
直接使用主机Docker:通过挂载主机的Docker套接字到Runner容器中
volumes: - /var/run/docker.sock:/var/run/docker.sock这种方法简单但安全性较低,Runner容器将拥有与主机相同的Docker权限
-
使用rootless Docker:提高安全性但配置更复杂
总结
在自托管的GitHub Actions Runner环境中解决Docker连接问题,采用DinD作为sidecar容器是最为推荐的方法。它不仅解决了守护进程不可用的问题,还保持了良好的隔离性和安全性。通过正确的配置,开发者可以顺利地在自托管Runner上执行Docker构建和推送操作,实现持续集成和交付流程的自动化。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00