RetinexNet 开源项目教程
2024-09-13 06:17:09作者:翟萌耘Ralph
1. 项目介绍
RetinexNet 是一个基于 TensorFlow 实现的深度学习模型,专门用于低光图像增强。该项目在 BMVC'18 会议上进行了口头报告,并展示了其在低光图像增强方面的显著效果。RetinexNet 的核心思想是通过深度学习技术对图像进行分解,将其分解为反射率和光照两个部分,然后对光照部分进行增强,最后再进行重构,从而实现图像的低光增强。
2. 项目快速启动
环境要求
- Python
- TensorFlow >= 1.5.0
- numpy
- PIL
快速测试
要快速测试你自己的图像,可以使用以下命令:
python main.py --use_gpu=1 \ # 是否使用GPU
--gpu_idx=0 \ # GPU索引
--gpu_mem=0.5 \ # GPU内存使用
--phase=test \ # 测试阶段
--test_dir=/path/to/your/test/dir/ \ # 测试图像目录
--save_dir=/path/to/save/results/ \ # 保存结果目录
--decom=0 # 是否保存分解结果
训练模型
首先,从项目页面下载训练数据集,并将训练对保存到 /data/our485/ 和 /data/syn/ 目录下。然后运行以下命令进行训练:
python main.py --use_gpu=1 \ # 是否使用GPU
--gpu_idx=0 \ # GPU索引
--gpu_mem=0.5 \ # GPU内存使用
--phase=train \ # 训练阶段
--epoch=100 \ # 训练轮数
--batch_size=16 \ # 批量大小
--patch_size=48 \ # 训练块大小
--start_lr=0.001 \ # 初始学习率
--eval_every_epoch=20 \ # 每多少轮评估一次
--checkpoint_dir=/checkpoint # 检查点目录
--sample_dir=/sample # 样本保存目录
3. 应用案例和最佳实践
应用案例
RetinexNet 可以广泛应用于需要低光图像增强的场景,例如:
- 夜间监控:增强夜间监控摄像头的图像质量。
- 医学影像:提高低光条件下拍摄的医学影像的清晰度。
- 摄影后期处理:增强低光环境下拍摄的照片。
最佳实践
- 数据准备:确保训练数据集的质量和多样性,以提高模型的泛化能力。
- 参数调整:根据具体应用场景调整训练参数,如学习率、批量大小等。
- 模型评估:定期评估模型性能,确保其在不同场景下的表现。
4. 典型生态项目
- TensorFlow:RetinexNet 基于 TensorFlow 实现,TensorFlow 是一个广泛使用的深度学习框架,提供了丰富的工具和库。
- PIL (Pillow):用于图像处理的 Python 库,RetinexNet 使用 PIL 进行图像的读取和保存。
- numpy:用于数值计算的 Python 库,RetinexNet 使用 numpy 进行数据处理和矩阵运算。
通过这些生态项目的支持,RetinexNet 能够高效地进行图像处理和模型训练。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355