PEFT项目中的命名实体识别与关系抽取模型微调实践指南
2025-05-12 21:15:03作者:余洋婵Anita
在自然语言处理领域,命名实体识别(NER)和关系抽取(RE)是两项基础且重要的任务。本文基于PEFT(Parameter-Efficient Fine-Tuning)项目中的讨论,深入探讨如何利用参数高效微调技术来优化NER和RE模型的性能。
任务背景与重要性
NER技术能够从文本中识别出特定领域的专业术语,如商业实体、化学名称、粒子物理术语等。而RE则进一步分析这些实体之间的关系。例如在句子"苹果公司于2014年以30亿美元收购Beats"中,NER会识别出"苹果公司"、"Beats"、"30亿美元"和"2014"等实体,RE则能提取出"收购"这一关系。
这两项技术在多个领域具有广泛应用价值:
- 金融领域:识别公司名称、交易金额和并购关系
- 医疗领域:提取疾病名称、药物成分及其相互作用
- 科研领域:标注化学物质、物理参数及其关联
数据集准备要点
构建高质量的数据集是模型微调成功的关键。数据集应包含三个核心要素:
- 原始文本句子
- 标注的实体及其类型
- 实体间的关系标注
对于通用领域模型,建议使用跨领域数据,涵盖金融、医疗、科技等多个专业领域。若针对特定领域,则应专注于该领域的专业语料。常用的基准数据集包括CONLL-2003等标注完善的语料库。
PEFT微调技术选择
在PEFT框架下,LoRA(Low-Rank Adaptation)是较为推荐的参数高效微调方法。相比全参数微调,LoRA通过低秩矩阵分解大幅减少可训练参数数量,同时保持模型性能。这种方法特别适合计算资源有限但需要定制化NER/RE模型的场景。
实现建议
技术实现时需考虑以下要点:
- 预处理阶段应对文本进行适当清洗和标准化
- 实体标注可采用BIO或BILOU等标注方案
- 关系抽取可建模为分类任务或序列生成任务
- 评估指标应包括精确率、召回率和F1值
- 可尝试不同的PEFT配置组合以优化性能
通过PEFT技术微调NER和RE模型,研究人员可以在保持预训练语言模型强大表征能力的同时,高效地适配特定领域需求,避免从零开始训练的资源消耗。这种参数高效的方法为领域自适应提供了实用且经济的解决方案。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
424
3.26 K
Ascend Extension for PyTorch
Python
231
264
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
334
暂无简介
Dart
686
161
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
React Native鸿蒙化仓库
JavaScript
266
326
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.22 K
667
仓颉编译器源码及 cjdb 调试工具。
C++
136
869