Django REST Framework Serializer Extensions 使用教程
1. 项目介绍
Django REST framework serializer extensions 是一个开源项目,旨在帮助开发者减少重复编写 Django REST Framework 序列化的工作。通过允许在视图或请求的基础上定义字段,该扩展减少了创建多个非常相似序列化的需求。它支持字段的白名单和黑名单功能,还可以选择性地展开子序列化器。此外,该扩展还能优化查询集,减少数据库的调用次数,提高性能。同时,它还提供了对 HashIds 的支持,以增强数据的安全性。
2. 项目快速启动
安装
首先,确保你的环境中已经安装了以下依赖:
- Python 3.8+
- Django 3.2+
- Django REST Framework 3.12+
- HashIds (>1.0)
然后,你可以使用 pip 来安装 django-rest-framework-serializer-extensions:
pip install djangorestframework-serializer-extensions
接着,将 rest_framework_serializer_extensions 添加到你的 Django 项目的 INSTALLED_APPS 设置中:
INSTALLED_APPS = (
# ...
'rest_framework_serializer_extensions',
)
基本使用
在你的序列化器中添加 SerializerExtensionsMixin:
from rest_framework import serializers
from rest_framework_serializer_extensions import SerializerExtensionsMixin
class OwnerSerializer(SerializerExtensionsMixin, serializers.ModelSerializer):
class Meta:
model = models.Owner
fields = ('id', 'name')
expandable_fields = dict(
organization=OrganizationSerializer,
cars=dict(
serializer=SkuSerializer,
many=True
)
)
在你的 API 视图中添加 SerializerExtensionsAPIViewMixin:
from rest_framework import generics
from rest_framework_serializer_extensions import SerializerExtensionsAPIViewMixin
class RetrieveOwnerAPIView(SerializerExtensionsAPIViewMixin, generics.RetrieveAPIView):
# ...
3. 应用案例和最佳实践
场景一:动态字段扩展
假设你有一个用户模型,你希望在不同的视图中展示不同的字段。你可以使用 SerializerExtensionsMixin 来动态添加或删除字段。
class UserSerializer(SerializerExtensionsMixin, serializers.ModelSerializer):
class Meta:
model = models.User
fields = '__all__'
expandable_fields = {
'profile': ProfileSerializer
}
在视图中,你可以通过请求参数来控制哪些字段应该被包含:
class UserRetrieveAPIView(SerializerExtensionsAPIViewMixin, generics.RetrieveAPIView):
queryset = models.User.objects.all()
serializer_class = UserSerializer
def get_serializer(self, *args, **kwargs):
kwargs['context'] = {
'request': self.request,
'view': self
}
return self.serializer_class(*args, **kwargs)
场景二:优化数据库查询
使用 SerializerExtensionsMixin 可以自动优化查询集,减少不必要的数据库调用。
class DetailedUserSerializer(SerializerExtensionsMixin, serializers.ModelSerializer):
class Meta:
model = models.User
fields = ('id', 'username', 'email', 'profile')
expandable_fields = {
'profile': ProfileSerializer
}
在你的视图中,你可以利用这个特性来提高性能。
4. 典型生态项目
目前,Django REST Framework Serializer Extensions 社区中并没有明确的典型生态项目。但是,你可以通过搜索和查看依赖于该扩展的仓库来找到一些使用该项目的例子。这些项目可能会提供更多关于如何在实际应用中使用 Django REST Framework Serializer Extensions 的见解。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C037
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C00
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0113
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00