ts-jest模块解析中customConditions未重置问题分析
问题背景
在TypeScript与Jest结合的测试环境中,ts-jest作为桥梁工具负责将TypeScript代码转换为Jest可执行的JavaScript代码。在实际使用中,当开发者配置了特定模块解析选项时,可能会遇到一个与customConditions相关的编译错误。
问题现象
当项目配置同时包含以下TypeScript编译选项时:
"module": "preserve""moduleResolution": "bundler""customConditions": ["node"]
ts-jest在转换过程中会抛出错误提示:"Option 'customConditions' can only be used when 'moduleResolution' is set to 'node16', 'nodenext', or 'bundler'."。这表明虽然原始配置是正确的,但在ts-jest内部处理过程中出现了问题。
根本原因
深入分析ts-jest源码发现,在fixupCompilerOptionsForModuleKind方法中,当处理非ES模块时,会将moduleResolution强制设置为Node.js模式(ModuleResolutionKind.Node10或ModuleResolutionKind.NodeJs)。然而,该方法没有同时清除不再适用的customConditions选项,导致TypeScript编译器在验证选项时抛出错误。
技术细节
customConditions是TypeScript较新版本引入的配置项,专门用于Node.js的Conditional Exports功能。它仅在特定的模块解析模式下有效:
- node16
 - nodenext
 - bundler
 
当ts-jest将模块解析模式改为传统的Node.js模式时,理论上应该同步移除这个不再适用的选项,但当前实现中遗漏了这一逻辑。
解决方案
修复方案相对简单直接:在修改moduleResolution的同时,将customConditions显式设置为undefined。这可以通过修改fixupCompilerOptionsForModuleKind方法的实现来完成,无论是对于CommonJS模块还是ES模块的情况。
影响范围
该问题主要影响以下使用场景:
- 项目中使用较新TypeScript版本(支持
customConditions) - 配置了
customConditions选项 - 使用
moduleResolution为bundler模式 - 通过ts-jest进行测试代码转换
 
最佳实践建议
对于需要在测试环境中使用条件导出的项目,建议:
- 明确区分开发/构建配置与测试配置
 - 考虑在jest配置中覆盖特定的TypeScript选项
 - 关注ts-jest版本更新,及时获取相关修复
 
总结
这个问题展示了构建工具链中配置传递的重要性,特别是在多阶段处理过程中,需要确保各阶段的配置一致性。ts-jest作为连接TypeScript和Jest的桥梁,需要特别注意选项的兼容性和正确性处理。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00