AWS Deep Learning Containers 发布 PyTorch 2.5.1 推理镜像
2025-07-06 17:45:36作者:史锋燃Gardner
AWS Deep Learning Containers(DLC)是亚马逊云科技提供的预构建深度学习容器镜像,这些镜像经过优化,可直接在AWS云环境中运行,大大简化了深度学习环境的部署过程。DLC包含了主流深度学习框架的最新版本,并针对AWS基础设施进行了性能优化。
近日,AWS发布了PyTorch 2.5.1推理专用容器镜像,支持Python 3.11环境,适用于CPU和GPU两种计算环境。这些镜像基于Ubuntu 22.04操作系统构建,专为EC2实例优化。
镜像版本概览
本次发布的PyTorch推理镜像包含两个主要版本:
-
CPU版本:适用于无GPU加速的计算环境,镜像标签为
2.5.1-cpu-py311-ubuntu22.04-ec2-v1.21。该版本包含了PyTorch 2.5.1 CPU版及其相关生态工具。 -
GPU版本:针对NVIDIA GPU加速环境优化,基于CUDA 12.4构建,镜像标签为
2.5.1-gpu-py311-cu124-ubuntu22.04-ec2-v1.21。此版本包含了完整的GPU加速支持。
关键组件与依赖
两个版本都预装了PyTorch生态系统的核心组件:
- PyTorch核心:2.5.1版本
- TorchVision:0.20.1版本
- TorchAudio:2.5.1版本
- TorchServe:0.12.0模型服务框架
- Torch Model Archiver:0.12.0模型归档工具
此外,镜像中还包含了常用的数据处理和科学计算库:
- NumPy:2.1.3版本,高性能数值计算基础库
- SciPy:1.14.1版本,科学计算工具集
- Pandas:2.2.3版本(仅GPU镜像),数据分析工具
- OpenCV:4.10.0.84版本,计算机视觉库
- Pillow:11.0.0版本,图像处理库
系统级优化
AWS对这些镜像进行了系统级的优化:
- 编译器支持:包含了GCC 11工具链,确保代码编译性能
- CUDA支持:GPU版本完整支持CUDA 12.4和cuDNN,最大化GPU利用率
- 系统工具:预装了常用开发工具如emacs,方便用户进行调试
- AWS集成:内置AWS CLI、boto3等工具,便于与AWS服务交互
使用场景
这些预构建的PyTorch推理镜像特别适合以下场景:
- 模型部署:快速部署训练好的PyTorch模型到生产环境
- 推理服务:构建高性能的模型推理服务
- 开发测试:为PyTorch应用提供一致的开发环境
- CI/CD流水线:作为持续集成和持续部署的基础镜像
版本兼容性
需要注意的是,这些镜像基于Python 3.11构建,用户在使用时需确保应用程序兼容此Python版本。同时,GPU版本需要搭配支持CUDA 12.4的NVIDIA驱动使用。
AWS Deep Learning Containers的PyTorch镜像持续更新,为用户提供最新、最稳定的深度学习环境,显著降低了部署深度学习应用的复杂度。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Python开发者的macOS终极指南:VSCode安装配置全攻略 Launch4j中文版:Java应用程序打包成EXE的终极解决方案 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案
项目优选
收起
deepin linux kernel
C
25
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
415
3.19 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
680
160
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
Ascend Extension for PyTorch
Python
229
259
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
689
327
React Native鸿蒙化仓库
JavaScript
265
326
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.21 K
660