Wenet项目中FireRedASR模型导出ONNX的技术挑战与解决方案
2025-06-13 14:57:56作者:韦蓉瑛
背景介绍
Wenet作为一个端到端的语音识别工具包,其FireRedASR模型采用了基于注意力机制的编解码器结构(AED)。在实际应用中,开发者经常需要将训练好的PyTorch模型转换为ONNX格式,以便在不同平台上进行高效部署。然而,在尝试导出FireRedASR模型时,会遇到"NotImplementedError: firedasr not support streaming pos encding"的错误提示。
问题分析
FireRedASR模型的特殊结构导致了导出ONNX时的技术挑战:
-
模型结构特殊性:FireRedASR采用AED架构,包含编码器和解码器两个主要部分,这种结构在导出时需要特殊处理。
-
位置编码限制:原生的导出脚本不支持AED形式的解码模型,特别是流式位置编码部分。
-
性能考量:即使成功导出,ONNX版本的推理效率也需要特别优化才能达到PyTorch原生的性能水平。
解决方案
针对这些挑战,技术社区已经提供了几种可行的解决方案:
-
分模块导出:
- 分别导出编码器和解码器部分
- 需要自行实现解码逻辑的桥接部分
- 这种方法需要较强的工程实现能力
-
使用预转换模型:
- 已有技术团队提供了预转换好的FireRedASR ONNX模型
- 这些模型已经过优化,可以直接用于推理
-
性能优化建议:
- 对于GPU推理,必须进行适当的warmup操作
- 批处理大小对性能有显著影响,需要根据实际场景调整
- CPU推理通常比GPU慢3-4倍,这是预期内的性能差异
实践建议
-
评估需求:如果不是必须使用ONNX格式,建议直接使用PyTorch原生的recognize.py脚本,因为Wenet团队已经对AED解码做了专门的优化。
-
性能测试:在实际部署前,务必进行充分的性能测试。测试数据显示,单线程情况下:
- PyTorch模型的RTF约为0.2
- ONNX GPU版本的RTF约为0.335
- ONNX CPU版本的RTF约为1.375
-
等待开源:相关团队表示将在适当时候开源ONNX导出代码,届时开发者可以更灵活地进行模型转换和优化。
总结
FireRedASR模型到ONNX的转换是一个需要专业技术支持的过程。目前已有预转换模型可供使用,未来随着相关代码的开源,开发者将能更灵活地进行模型部署和优化。在实际应用中,建议根据具体场景需求选择最适合的部署方案,并充分考虑性能与便利性的平衡。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K