Dexie.js v4.1.0-beta.43 发布:原生集成 Y.js 实现协同编辑
Dexie.js 是一个轻量级的 JavaScript 索引数据库库,基于 IndexedDB 构建,提供了更简洁、更强大的 API。它特别适合需要在浏览器中存储大量结构化数据的应用场景,如离线应用、渐进式 Web 应用(PWA)等。
最新发布的 Dexie.js v4.1.0-beta.43 版本带来了一个令人兴奋的新特性——原生支持 Y.js 集成。这一功能为构建实时协作应用提供了强大的基础支持。
Y.js 集成概述
Y.js 是一个流行的 CRDT(冲突自由复制数据类型)库,专门用于构建实时协作应用。它通过算法确保不同客户端之间的数据最终一致性,非常适合文档协作、白板等场景。
Dexie.js 4.1.0-beta.43 版本通过以下方式实现了与 Y.js 的深度集成:
- 新的构造函数选项
Y,允许传入 Y.js 库 - 新的 schema 语法
<propertyName>:Y,声明虚拟 Y.Doc 属性 - 新的 DexieYProvider,负责文档的加载和同步
核心功能详解
1. 初始化配置
要在 Dexie 中使用 Y.js 功能,首先需要在创建数据库实例时传入 Y.js 库:
import * as Y from 'yjs';
import Dexie from "dexie";
const db = new Dexie("dbname", { Y });
2. Schema 定义
在定义数据库表结构时,可以使用新的 :Y 语法声明 Y.js 文档属性:
db.version(1).stores({
comments: 'id, title, contentDoc:Y'
});
这里的 contentDoc:Y 声明了一个虚拟的 Y.Doc 属性,它不会作为索引存储在数据库中,但会在查询结果中作为属性可用。
3. 文档操作
获取包含 Y.js 文档的对象后,可以使用 DexieYProvider 来加载和管理文档:
const comment = await db.comments.get(commentId);
try {
DexieYProvider.load(comment.contentDoc);
await comment.contentDoc.whenLoaded;
// 文档已加载,可以使用 Y.js 生态系统功能
} finally {
DexieYProvider.release(comment.contentDoc);
}
4. React 集成
对于 React 开发者,dexie-react-hooks 包提供了新的 useDocument() hook,简化了 Y.js 文档的使用:
function MyComponent({commentId}) {
const comment = useLiveQuery(() => db.comments.get(commentId));
const provider = useDocument(comment?.contentDoc);
return provider
? <CommentEditor doc={comment.contentDoc} provider={provider} />
: null;
}
技术实现细节
文档存储机制
在底层,每个声明的 Y 属性都会生成一个专用的表来存储 Y.js 更新。这些更新与父表和属性名称相关联。当文档更新时,会在这个表中添加新条目。
DexieYProvider 负责双向加载和观察更新,确保本地和远程变更能够正确同步。
文档实例管理
Y 属性具有以下特点:
- 永远不为 null 或 undefined,即使添加对象时未提供文档
- 不是对象的自有属性,而是设置在原型上
- 只读属性,只能通过 Y.js 方法更新
- 使用全局缓存管理,相同主键的对象共享同一个 Y.Doc 实例
应用场景
这一集成特别适合以下场景:
- 协作文档编辑(如 Google Docs 类应用)
- 实时白板协作
- 多人代码编辑器
- 任何需要实时同步结构化数据的应用
总结
Dexie.js v4.1.0-beta.43 通过原生集成 Y.js,为开发者提供了构建实时协作应用的强大工具。这一集成不仅简化了开发流程,还通过智能的文档管理和同步机制,确保了数据的一致性和性能。
对于已经使用 Dexie.js 的应用,这一新特性可以无缝集成,逐步添加协作功能;对于新项目,则可以直接基于这一强大组合构建完整的协作体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00