Malli 0.18.0 版本发布:解析器优化与关键修复
Malli 是一个用于 Clojure 和 ClojureScript 的功能强大的数据验证和模式库。它提供了一种声明式的方式来定义数据结构,并支持验证、转换、生成测试数据等功能。Malli 的设计哲学是简单、可组合和可扩展,这使得它成为处理复杂数据结构的理想选择。
解析与反解析的重大改进
本次 0.18.0 版本中最显著的变化是对解析器输出的重构。现在,parse 函数的输出使用了新的 malli.core.Tag 和 malli.core.Tags 记录类型来处理 :orn、:multi、:altn、:catn 等复杂模式。
这一变化意味着:
- 解析后的数据结构现在具有更明确的语义标签
- 类型信息更加丰富和规范化
- 为未来的扩展提供了更好的基础架构
对于开发者来说,这意味着在处理复杂模式时能够获得更一致和可预测的行为,特别是在涉及联合类型(:orn)和多重分派(:multi)等高级特性时。
Swagger 和 JSON Schema 输出的改进
另一个重要变化是 Swagger 和 JSON-Schema 输出现在使用点号(.)而不是斜杠(/)作为分隔符。这一变化使得生成的模式名称更加符合现代工具的期望,提高了与其他生态系统的兼容性。
值得注意的是,这一变化只会影响那些依赖于模式确切名称的集成场景。对于大多数用户来说,这一改进应该是透明的,不会破坏现有功能。
文档与错误修复的增强
本次更新还包含了对文档的改进,特别是关于 optional-keys 和 required-keys 的部分,使得这些关键概念更加清晰易懂。
在错误修复方面,有几个值得注意的改进:
- 修复了
:path在解释:ref错误时的问题 - 改进了对带有原始类型提示(如
^double)函数的处理 :map-of和:map解码现在能正确保留输入映射类型(如sorted-map)- 修复了 CLJS 中模式和 into-schemas 的打印一致性问题
- 改进了
:merge和:union对单子节点的处理 - 修复了
default-value-transformer在:map中包含:ref时的问题 - 修复了
empty?模式的生成器问题
向后兼容性考虑
作为一次重大版本更新,0.18.0 包含了一些破坏性变更。开发者需要注意:
- 解析器输出的结构变化可能影响现有的解析后处理逻辑
- Swagger/JSON Schema 输出的分隔符变化可能影响某些集成场景
建议在升级前仔细测试现有代码,特别是那些直接依赖于解析输出或模式名称的功能。
总结
Malli 0.18.0 版本带来了多项重要改进,特别是在解析器架构和模式输出方面。这些变化不仅修复了已知问题,还为库的未来发展奠定了更好的基础。对于现有用户,建议评估破坏性变更的影响并相应地调整代码;对于新用户,这个版本提供了更稳定和一致的功能集。
随着 Malli 的持续发展,它正成为 Clojure 生态系统中处理数据验证和模式的最强大工具之一。0.18.0 版本的这些改进进一步巩固了这一地位。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00