推荐开源项目:Holistically-Attracted Wireframe Parsing —— 从监督学习到自监督学习的飞跃
2024-05-23 12:14:14作者:冯爽妲Honey
在这个快速发展的计算机视觉领域中,准确地解析图像中的线框(wireframe)是至关重要的一步,它在诸多应用如场景理解、3D重建等方面都起着关键作用。今天,我们向您隆重推荐一个创新的开源项目——Holistically-Attracted Wireframe Parsing(HAWP),这个项目不仅提供了先进的全监督线框解析器HAWPv2,还推出了自我监督版本HAWPv3,实现了对未见过的图像的有效解析。
1. 项目介绍
HAWP是一个用于线框解析的深度学习框架,它的核心是HAT Fields(Holistically-Attracted Transformer Fields),这是一种通用且鲁棒的线段表示方法。通过HAWPv2和HAWPv3,开发者可以利用强大的机器学习模型,实现对图像中线框结构的高度精确解析,无论是在训练集内的图片还是不在分布范围内的图像。
2. 技术分析
HAWP项目引入了HAT Fields概念,该理论能够在复杂背景下稳定地捕捉线段信息。HAWPv2作为全监督的学习模型,已经在多个基准数据集上达到了state-of-the-art的性能。而HAWPv3则采用自监督学习策略,无需大量标注数据即可进行训练,适应性更广。
3. 应用场景
- 建筑和室内设计:线框解析可用于提取建筑设计元素,辅助设计师进行3D建模。
- 自动驾驶:识别道路标志和其他基础设施的线条,帮助车辆更好地理解和规划行驶路线。
- 图像增强与处理:通过线框信息可进行图像增强或艺术风格转换。
- 学术研究:为计算机视觉领域的研究人员提供了一个强大工具,推动线框检测和解析的研究进步。
4. 项目特点
- 高效模型:HAWPv2和HAWPv3模型在准确性与速度之间取得了良好的平衡,适用于实时应用。
- 广泛适用:HAWPv3自我监督特性使其能应对各种不同的输入图像,包括未见过的场景。
- 易于使用:项目提供详细文档和示例代码,便于用户快速上手并进行定制化开发。
- 社区支持:该项目得到了持续的更新和维护,并有活跃的社区支持,遇到问题时能得到及时的帮助。
要开始使用HAWP,只需遵循提供的安装指南,无论是Anaconda环境还是Docker镜像,都能轻松搭建起运行环境。此外,项目团队还提供了训练好的模型权重,用户可以直接进行推理测试,体验HAWP的强大功能。
最后,如果您在项目中受益,请不要忘记引用他们的研究成果:
@article{HAWP-journal,
title = "Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised Learning",
author = "Nan Xue and Tianfu Wu and Song Bai and Fu-Dong Wang and Gui-Song Xia and Liangpei Zhang and Philip H.S. Torr
journal = "IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI)",
year = {2023}
}
@inproceedings{HAWP,
title = "Holistically-Attracted Wireframe Parsing",
author = "Nan Xue and Tianfu Wu and Song Bai and Fu-Dong Wang and Gui-Song Xia and Liangpei Zhang and Philip H.S. Torr
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
year = {2020},
}
现在就加入HAWP社区,开启您的线框解析之旅吧!
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355