推荐开源项目:Holistically-Attracted Wireframe Parsing —— 从监督学习到自监督学习的飞跃
2024-05-23 12:14:14作者:冯爽妲Honey
在这个快速发展的计算机视觉领域中,准确地解析图像中的线框(wireframe)是至关重要的一步,它在诸多应用如场景理解、3D重建等方面都起着关键作用。今天,我们向您隆重推荐一个创新的开源项目——Holistically-Attracted Wireframe Parsing(HAWP),这个项目不仅提供了先进的全监督线框解析器HAWPv2,还推出了自我监督版本HAWPv3,实现了对未见过的图像的有效解析。
1. 项目介绍
HAWP是一个用于线框解析的深度学习框架,它的核心是HAT Fields(Holistically-Attracted Transformer Fields),这是一种通用且鲁棒的线段表示方法。通过HAWPv2和HAWPv3,开发者可以利用强大的机器学习模型,实现对图像中线框结构的高度精确解析,无论是在训练集内的图片还是不在分布范围内的图像。
2. 技术分析
HAWP项目引入了HAT Fields概念,该理论能够在复杂背景下稳定地捕捉线段信息。HAWPv2作为全监督的学习模型,已经在多个基准数据集上达到了state-of-the-art的性能。而HAWPv3则采用自监督学习策略,无需大量标注数据即可进行训练,适应性更广。
3. 应用场景
- 建筑和室内设计:线框解析可用于提取建筑设计元素,辅助设计师进行3D建模。
- 自动驾驶:识别道路标志和其他基础设施的线条,帮助车辆更好地理解和规划行驶路线。
- 图像增强与处理:通过线框信息可进行图像增强或艺术风格转换。
- 学术研究:为计算机视觉领域的研究人员提供了一个强大工具,推动线框检测和解析的研究进步。
4. 项目特点
- 高效模型:HAWPv2和HAWPv3模型在准确性与速度之间取得了良好的平衡,适用于实时应用。
- 广泛适用:HAWPv3自我监督特性使其能应对各种不同的输入图像,包括未见过的场景。
- 易于使用:项目提供详细文档和示例代码,便于用户快速上手并进行定制化开发。
- 社区支持:该项目得到了持续的更新和维护,并有活跃的社区支持,遇到问题时能得到及时的帮助。
要开始使用HAWP,只需遵循提供的安装指南,无论是Anaconda环境还是Docker镜像,都能轻松搭建起运行环境。此外,项目团队还提供了训练好的模型权重,用户可以直接进行推理测试,体验HAWP的强大功能。
最后,如果您在项目中受益,请不要忘记引用他们的研究成果:
@article{HAWP-journal,
title = "Holistically-Attracted Wireframe Parsing: From Supervised to Self-Supervised Learning",
author = "Nan Xue and Tianfu Wu and Song Bai and Fu-Dong Wang and Gui-Song Xia and Liangpei Zhang and Philip H.S. Torr
journal = "IEEE Trans. on Pattern Analysis and Machine Intelligence (PAMI)",
year = {2023}
}
@inproceedings{HAWP,
title = "Holistically-Attracted Wireframe Parsing",
author = "Nan Xue and Tianfu Wu and Song Bai and Fu-Dong Wang and Gui-Song Xia and Liangpei Zhang and Philip H.S. Torr
booktitle = "IEEE Conference on Computer Vision and Pattern Recognition (CVPR)",
year = {2020},
}
现在就加入HAWP社区,开启您的线框解析之旅吧!
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
53
468

deepin linux kernel
C
22
5

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
7
0

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
878
517

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
336
1.1 K

React Native鸿蒙化仓库
C++
180
264

一个高性能、可扩展、轻量、省心的仓颉Web框架。Rest, 宏路由,Json, 中间件,参数绑定与校验,文件上传下载,MCP......
Cangjie
87
14

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.08 K
0

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
349
381

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
612
60