SystemC 开源项目教程
1. 项目介绍
SystemC 是一个基于 C++ 的类库和宏集合,提供事件驱动的仿真接口,用于系统级设计和硬件描述。它由 Open SystemC Initiative (OSCI) 开发并推广,现由 Accellera Systems Initiative 维护。SystemC 被广泛应用于系统级建模、架构探索、性能建模、软件开发、功能验证和高层次综合等领域。
SystemC 的核心功能包括模块、端口、信号、导出、进程、通道、接口、事件和数据类型等,这些功能使得设计者能够使用 C++ 语法描述并发进程,并在仿真环境中进行实时通信。
2. 项目快速启动
2.1 环境准备
在开始之前,请确保您的系统已经安装了以下工具:
- Git
- C++ 编译器(如 GCC 或 Clang)
- CMake
2.2 下载与安装
首先,克隆 SystemC 的 GitHub 仓库:
git clone https://github.com/accellera-official/systemc.git
cd systemc
接下来,使用 CMake 配置并构建项目:
mkdir build
cd build
cmake ..
make
2.3 编写第一个 SystemC 程序
以下是一个简单的 SystemC 程序示例,它实现了一个加法器:
#include "systemc.h"
SC_MODULE(adder) {
sc_in<int> a, b;
sc_out<int> sum;
void do_add() {
sum.write(a.read() + b.read());
}
SC_CTOR(adder) {
SC_METHOD(do_add);
sensitive << a << b;
}
};
int sc_main(int argc, char* argv[]) {
sc_signal<int> a, b, sum;
adder adder_inst("adder_inst");
adder_inst.a(a);
adder_inst.b(b);
adder_inst.sum(sum);
a = 5;
b = 3;
sc_start();
cout << "Sum: " << sum << endl;
return 0;
}
2.4 编译与运行
在 build 目录下,使用以下命令编译并运行程序:
g++ -I. -o adder adder.cpp -lsystemc
./adder
运行结果将输出:
Sum: 8
3. 应用案例和最佳实践
3.1 系统级建模
SystemC 常用于系统级建模,特别是在电子系统级(ESL)设计中。通过 SystemC,设计者可以在更高的抽象层次上描述系统行为,从而加速设计过程。
3.2 高层次综合
SystemC 也被用于高层次综合(HLS),将高级语言描述的算法转换为硬件描述语言(HDL)。这使得算法工程师可以在不熟悉硬件描述语言的情况下,快速验证和优化硬件设计。
3.3 功能验证
在功能验证阶段,SystemC 可以用于创建虚拟平台,模拟硬件行为并与软件进行交互。这有助于在硬件实现之前发现和修复设计中的问题。
4. 典型生态项目
4.1 SystemC AMS
SystemC AMS(Analog/Mixed-Signal)扩展了 SystemC,支持模拟和混合信号的建模。它允许设计者在同一环境中描述数字和模拟电路,从而简化复杂系统的建模和验证。
4.2 SystemC TLM
SystemC TLM(Transaction-Level Modeling)提供了一种更高层次的建模方法,允许设计者在事务级别描述系统行为。这有助于提高仿真速度和设计抽象层次。
4.3 SystemC Verification
SystemC Verification 库提供了用于验证 SystemC 模型的工具和方法。它包括断言、覆盖率分析和测试平台生成等功能,帮助设计者确保设计的正确性和完整性。
通过这些生态项目,SystemC 不仅限于硬件描述,还扩展到了系统级设计和验证的各个方面,为设计者提供了全面的解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00