Seurat v5多组学数据整合:通过scMT-seq桥接Multiome与snmC-seq数据
多组学数据整合的技术挑战
在单细胞多组学研究中,整合不同技术平台产生的数据一直是个重要挑战。10x Genomics Multiome技术能够同时获取同一细胞的转录组(scRNA-seq)和染色质可及性(scATAC-seq)数据,而单核甲基化测序(snmC-seq)则提供了表观遗传层面的DNA甲基化信息。如何有效整合这些互补但技术差异显著的数据类型,对于全面理解细胞状态和基因调控机制至关重要。
scMT-seq的桥梁作用
scMT-seq(单细胞多组学测序)技术能够同时测量同一细胞的转录组和甲基化组,这使其成为连接Multiome数据和snmC-seq数据的理想桥梁。通过scMT-seq数据集,我们可以建立转录组与甲基化组之间的对应关系,进而实现Multiome(RNA+ATAC)与snmC-seq数据的整合。
Seurat v5的整合策略
Seurat v5提供了强大的多模态数据整合能力,特别适合处理这种复杂的多组学数据整合场景。具体实现路径可分为两个方向:
-
甲基化方向桥接:利用scMT-seq数据中甲基化与转录组的对应关系,将snmC-seq数据映射到Multiome数据的甲基化维度
-
转录组方向桥接:同样通过scMT-seq,将Multiome中的转录组数据与snmC-seq数据在转录组维度对齐
技术实现要点
在实际操作中,需要注意以下几个关键点:
-
特征选择:需要精心选择用于数据对齐的特征基因和甲基化位点,确保它们在不同数据集间具有可比性
-
批次校正:不同技术平台间的批次效应需要适当处理,Seurat的CCA或RPCA等方法可以发挥作用
-
空间保留:在整合过程中保持数据的拓扑结构,确保细胞类型和状态关系的准确性
-
质量控制:对各数据集进行严格的质量控制,去除低质量细胞和技术噪声
应用前景
这种整合方法为研究者提供了前所未有的多组学视角,能够:
- 揭示基因表达、染色质可及性和DNA甲基化之间的调控关系
- 发现传统单组学分析无法检测的细胞亚群
- 构建更完整的基因调控网络
- 在发育生物学、癌症研究和神经科学等领域有广泛应用潜力
随着单细胞多组学技术的不断发展,Seurat等工具提供的整合能力将使研究者能够更全面地理解细胞的复杂性和异质性。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









