Seurat v5多组学数据整合:通过scMT-seq桥接Multiome与snmC-seq数据
多组学数据整合的技术挑战
在单细胞多组学研究中,整合不同技术平台产生的数据一直是个重要挑战。10x Genomics Multiome技术能够同时获取同一细胞的转录组(scRNA-seq)和染色质可及性(scATAC-seq)数据,而单核甲基化测序(snmC-seq)则提供了表观遗传层面的DNA甲基化信息。如何有效整合这些互补但技术差异显著的数据类型,对于全面理解细胞状态和基因调控机制至关重要。
scMT-seq的桥梁作用
scMT-seq(单细胞多组学测序)技术能够同时测量同一细胞的转录组和甲基化组,这使其成为连接Multiome数据和snmC-seq数据的理想桥梁。通过scMT-seq数据集,我们可以建立转录组与甲基化组之间的对应关系,进而实现Multiome(RNA+ATAC)与snmC-seq数据的整合。
Seurat v5的整合策略
Seurat v5提供了强大的多模态数据整合能力,特别适合处理这种复杂的多组学数据整合场景。具体实现路径可分为两个方向:
-
甲基化方向桥接:利用scMT-seq数据中甲基化与转录组的对应关系,将snmC-seq数据映射到Multiome数据的甲基化维度
-
转录组方向桥接:同样通过scMT-seq,将Multiome中的转录组数据与snmC-seq数据在转录组维度对齐
技术实现要点
在实际操作中,需要注意以下几个关键点:
-
特征选择:需要精心选择用于数据对齐的特征基因和甲基化位点,确保它们在不同数据集间具有可比性
-
批次校正:不同技术平台间的批次效应需要适当处理,Seurat的CCA或RPCA等方法可以发挥作用
-
空间保留:在整合过程中保持数据的拓扑结构,确保细胞类型和状态关系的准确性
-
质量控制:对各数据集进行严格的质量控制,去除低质量细胞和技术噪声
应用前景
这种整合方法为研究者提供了前所未有的多组学视角,能够:
- 揭示基因表达、染色质可及性和DNA甲基化之间的调控关系
- 发现传统单组学分析无法检测的细胞亚群
- 构建更完整的基因调控网络
- 在发育生物学、癌症研究和神经科学等领域有广泛应用潜力
随着单细胞多组学技术的不断发展,Seurat等工具提供的整合能力将使研究者能够更全面地理解细胞的复杂性和异质性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00