探索动态之美:Nerfies——可变形神经辐射场
2024-05-22 13:31:39作者:温艾琴Wonderful
在计算机视觉和虚拟现实的前沿,Nerfies 是一个创新性的开源项目,它将静态的神经辐射场(NeRF)提升到了全新的水平。这个项目源自谷歌的研究,并且已经在国际计算机视觉会议(ICCV)上发表。让我们一起深入了解一下,如何利用Nerfies捕捉并重建动态世界的精彩瞬间。
项目介绍
Nerfies通过引入可变形神经辐射场的概念,让传统的静态场景渲染转变为对时间变化场景的准确建模。借助Google的JAX库,开发者可以轻松处理复杂的计算任务,从而实现从视频中提取连续的三维模型。
项目技术分析
Nerfies的核心是一个基于神经网络的框架,能够学习和理解随时间变化的几何结构和表面纹理。项目采用了相机参数和图像数据的联合优化策略,通过神经辐射场来估计每个像素的光线传播路径。此外,它还引入了变形场,以适应场景中的运动物体或拍摄对象的变化。
应用场景
Nerfies的应用范围广泛,包括但不限于:
- 电影和游戏制作:为角色动画提供更真实的细节和动态效果。
- 虚拟现实和增强现实:构建动态的交互式环境,增强用户体验。
- 历史文物记录:精确记录考古挖掘过程或其他随着时间演变的场景。
- 医学成像:研究生物体内部结构的动态变化。
项目特点
- 易用性:提供了Google Colab上的交互式教程,无需本地设置即可快速入门。
- 灵活性:支持不同规模的模型训练,可根据资源限制进行调整。
- 高性能:基于JAX,可以在TPU或GPU上高效运行。
- 全面文档:详细的数据集结构和配置说明,方便用户理解和应用。
如果你对捕捉和重塑动态世界有兴趣,或者在寻找一种新方法来创建引人入胜的数字内容,那么Nerfies绝对值得你尝试。立即开始你的Nerfies之旅,开启无限可能的虚拟世界探索吧!
引用该项目,请使用以下BibTeX条目:
@article{park2021nerfies
author = {Park, Keunhong
and Sinha, Utkarsh
and Barron, Jonathan T.
and Bouaziz, Sofien
and Goldman, Dan B
and Seitz, Steven M.
and Martin-Brualla, Ricardo},
title = {Nerfies: Deformable Neural Radiance Fields},
journal = {ICCV},
year = {2021},
}
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源 2022美赛A题优秀论文深度解析:自行车功率分配建模的成功方法 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
177
195
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
263
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
270
93
暂无简介
Dart
623
140
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
378
3.33 K
React Native鸿蒙化仓库
JavaScript
242
315
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.1 K
621
仓颉编译器源码及 cjdb 调试工具。
C++
126
856
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1