首页
/ Rotate-and-Render 项目使用教程

Rotate-and-Render 项目使用教程

2024-09-17 15:21:36作者:丁柯新Fawn

项目介绍

Rotate-and-Render 是一个用于从单视图图像生成逼真旋转人脸的开源项目。该项目提出了一种新颖的无监督框架,能够仅使用单视图图像集合在野外合成逼真的旋转人脸。其核心思想是通过在3D空间中前后旋转人脸,并将其重新渲染到2D平面,从而提供强大的自监督。该项目利用了3D人脸建模和高分辨率GAN的最新进展,构建了其核心模块。由于3D旋转和渲染可以在任意角度进行而不丢失细节,因此该方法非常适合在没有配对数据的情况下应用,即现有的方法无法处理的场景。

项目快速启动

环境准备

首先,确保你已经安装了Python 3.6,并安装了项目所需的基本依赖包。可以通过以下命令安装:

pip install -r requirements.txt

安装 Neural_Renderer

按照官方说明安装 Neural_Renderer:

# 安装命令
pip install neural_renderer

下载检查点和BFM模型

从提供的链接下载检查点和BFM模型,并将其放在 3ddfa 目录下并解压:

# 下载并解压命令
wget https://example.com/path/to/ckpt_and_bfm.zip
unzip ckpt_and_bfm.zip -d 3ddfa

运行示例

下载检查点并将其放在 /checkpoints/rs_model 目录下。然后运行以下命令来执行一个简单的 Rotate-and-Render 演示:

# 修改 experiments/v100_test.sh 文件,设置所需的旋转角度
# 例如,设置 --poses 为 0 表示正面人脸
bash experiments/v100_test.sh

结果将保存在 /results/ 目录下。

应用案例和最佳实践

应用案例

Rotate-and-Render 项目可以广泛应用于人脸识别、增强现实和计算机图形学等领域。例如,在人脸识别系统中,可以通过生成不同角度的人脸图像来增强训练数据,从而提高识别系统的鲁棒性。

最佳实践

  1. 数据预处理:在使用项目之前,确保人脸图像的3D参数已经保存到 3ddfa/results 目录下。可以通过 3ddfa 目录下的 inference.py 脚本进行处理。

  2. 数据准备:根据现有示例的模式准备数据集。可以添加新数据集的信息到 data/__init__.py 文件中的 dataset_info() 类中。

  3. 训练和推理:修改 experiments/train.sh 文件,并使用以下命令进行训练:

    bash experiments/train.sh
    

    训练过程中可以使用 Tensorboard 进行可视化。推理部分可以参考快速启动中的示例。

典型生态项目

  1. 3DDFA:该项目用于3D人脸重建,是 Rotate-and-Render 的基础模块之一。
  2. CycleGAN:用于图像到图像的转换,Rotate-and-Render 中的渲染到图像生成模块采用了 CycleGAN 的思想。
  3. Pix2PixHD:用于高分辨率图像生成,Rotate-and-Render 借鉴了其多层判别器和感知损失的设计。

通过这些生态项目的结合,Rotate-and-Render 能够实现高质量的人脸旋转和渲染效果。

项目优选

收起
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
33
24
CangjieCommunityCangjieCommunity
为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
825
0
redis-sdkredis-sdk
仓颉语言实现的Redis客户端SDK。已适配仓颉0.53.4 Beta版本。接口设计兼容jedis接口语义,支持RESP2和RESP3协议,支持发布订阅模式,支持哨兵模式和集群模式。
Cangjie
375
32
advanced-javaadvanced-java
Advanced-Java是一个Java进阶教程,适合用于学习Java高级特性和编程技巧。特点:内容深入、实例丰富、适合进阶学习。
JavaScript
75.92 K
19.09 K
qwerty-learnerqwerty-learner
为键盘工作者设计的单词记忆与英语肌肉记忆锻炼软件 / Words learning and English muscle memory training software designed for keyboard workers
TSX
15.62 K
1.45 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
19
2
杨帆测试平台杨帆测试平台
扬帆测试平台是一款高效、可靠的自动化测试平台,旨在帮助团队提升测试效率、降低测试成本。该平台包括用例管理、定时任务、执行记录等功能模块,支持多种类型的测试用例,目前支持API(http和grpc协议)、性能、CI调用等功能,并且可定制化,灵活满足不同场景的需求。 其中,支持批量执行、并发执行等高级功能。通过用例设置,可以设置用例的基本信息、运行配置、环境变量等,灵活控制用例的执行。
JavaScript
8
1
Yi-CoderYi-Coder
Yi Coder 编程模型,小而强大的编程助手
HTML
57
7
RuoYi-VueRuoYi-Vue
🎉 基于SpringBoot,Spring Security,JWT,Vue & Element 的前后端分离权限管理系统,同时提供了 Vue3 的版本
Java
147
26
anqicmsanqicms
AnQiCMS 是一款基于Go语言开发,具备高安全性、高性能和易扩展性的企业级内容管理系统。它支持多站点、多语言管理,能够满足全球化跨境运营需求。AnQiCMS 提供灵活的内容发布和模板管理功能,同时,系统内置丰富的利于SEO操作的功能,帮助企业简化运营和内容管理流程。AnQiCMS 将成为您建站的理想选择,在不断变化的市场中保持竞争力。
Go
78
5