Rotate-and-Render 项目使用教程
项目介绍
Rotate-and-Render 是一个用于从单视图图像生成逼真旋转人脸的开源项目。该项目提出了一种新颖的无监督框架,能够仅使用单视图图像集合在野外合成逼真的旋转人脸。其核心思想是通过在3D空间中前后旋转人脸,并将其重新渲染到2D平面,从而提供强大的自监督。该项目利用了3D人脸建模和高分辨率GAN的最新进展,构建了其核心模块。由于3D旋转和渲染可以在任意角度进行而不丢失细节,因此该方法非常适合在没有配对数据的情况下应用,即现有的方法无法处理的场景。
项目快速启动
环境准备
首先,确保你已经安装了Python 3.6,并安装了项目所需的基本依赖包。可以通过以下命令安装:
pip install -r requirements.txt
安装 Neural_Renderer
按照官方说明安装 Neural_Renderer:
# 安装命令
pip install neural_renderer
下载检查点和BFM模型
从提供的链接下载检查点和BFM模型,并将其放在 3ddfa 目录下并解压:
# 下载并解压命令
wget https://example.com/path/to/ckpt_and_bfm.zip
unzip ckpt_and_bfm.zip -d 3ddfa
运行示例
下载检查点并将其放在 /checkpoints/rs_model 目录下。然后运行以下命令来执行一个简单的 Rotate-and-Render 演示:
# 修改 experiments/v100_test.sh 文件,设置所需的旋转角度
# 例如,设置 --poses 为 0 表示正面人脸
bash experiments/v100_test.sh
结果将保存在 /results/ 目录下。
应用案例和最佳实践
应用案例
Rotate-and-Render 项目可以广泛应用于人脸识别、增强现实和计算机图形学等领域。例如,在人脸识别系统中,可以通过生成不同角度的人脸图像来增强训练数据,从而提高识别系统的鲁棒性。
最佳实践
-
数据预处理:在使用项目之前,确保人脸图像的3D参数已经保存到
3ddfa/results目录下。可以通过3ddfa目录下的inference.py脚本进行处理。 -
数据准备:根据现有示例的模式准备数据集。可以添加新数据集的信息到
data/__init__.py文件中的dataset_info()类中。 -
训练和推理:修改
experiments/train.sh文件,并使用以下命令进行训练:bash experiments/train.sh训练过程中可以使用 Tensorboard 进行可视化。推理部分可以参考快速启动中的示例。
典型生态项目
- 3DDFA:该项目用于3D人脸重建,是 Rotate-and-Render 的基础模块之一。
- CycleGAN:用于图像到图像的转换,Rotate-and-Render 中的渲染到图像生成模块采用了 CycleGAN 的思想。
- Pix2PixHD:用于高分辨率图像生成,Rotate-and-Render 借鉴了其多层判别器和感知损失的设计。
通过这些生态项目的结合,Rotate-and-Render 能够实现高质量的人脸旋转和渲染效果。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00