解决HuggingFace PEFT库中LoraConfig的exclude_modules参数错误问题
在使用HuggingFace的PEFT(Parameter-Efficient Fine-Tuning)库进行模型微调时,开发者可能会遇到一个常见的错误:"TypeError: LoraConfig.init() got an unexpected keyword argument 'exclude_modules'"。这个问题通常发生在尝试加载使用较新版本PEFT库训练的LoRA适配器时。
问题背景
PEFT库提供了参数高效的微调方法,其中LoRA(Low-Rank Adaptation)是一种流行的技术。当开发者尝试加载一个使用较新版本PEFT训练的LoRA适配器时,可能会遇到上述错误。这是因为较新版本的PEFT引入了exclude_modules参数,而旧版本不支持这个参数。
问题原因
这个错误的核心原因是版本不匹配。具体来说:
- 适配器是使用PEFT的主分支(开发版本)训练的,其中包含了
exclude_modules参数 - 而当前环境中安装的是PEFT的稳定版本(如0.13.2),该版本尚未包含这个新参数
解决方案
针对这个问题,有以下几种解决方法:
方法一:升级PEFT到开发版本
最直接的解决方案是将PEFT升级到最新的开发版本:
pip uninstall peft
pip install git+https://github.com/huggingface/peft
这将安装包含exclude_modules参数的最新开发版本(如peft-0.13.3.dev0)。
方法二:手动修改适配器配置
如果不想升级PEFT版本,可以手动编辑适配器的配置文件adapter_config.json,删除其中的exclude_modules相关行。
方法三:等待官方发布新版本
PEFT团队正在努力使配置向前兼容,未来版本将能自动处理这类问题。开发者可以关注官方更新。
相关注意事项
在使用LoRA进行微调时,还需要注意以下几点:
-
模块名称匹配:确保
modules_to_save中指定的模块名称与模型实际结构完全一致。例如,对于Qwen2.5模型,正确的嵌入层名称是embed_tokens而非embed_token。 -
词汇表大小:如果微调过程中修改了词汇表(如添加特殊token),需要确保
modules_to_save包含lm_head和embed_tokens,并且正确调整了嵌入层大小。 -
版本一致性:训练和推理时应使用相同版本的PEFT库,以避免因版本差异导致的问题。
总结
PEFT库的LoRA技术为大型语言模型的高效微调提供了强大支持。遇到exclude_modules参数错误时,开发者可以通过升级PEFT版本或手动修改配置来解决。随着PEFT库的持续发展,这类兼容性问题将逐步减少,为开发者提供更流畅的体验。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C090
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00