解决HuggingFace PEFT库中LoraConfig的exclude_modules参数错误问题
在使用HuggingFace的PEFT(Parameter-Efficient Fine-Tuning)库进行模型微调时,开发者可能会遇到一个常见的错误:"TypeError: LoraConfig.init() got an unexpected keyword argument 'exclude_modules'"。这个问题通常发生在尝试加载使用较新版本PEFT库训练的LoRA适配器时。
问题背景
PEFT库提供了参数高效的微调方法,其中LoRA(Low-Rank Adaptation)是一种流行的技术。当开发者尝试加载一个使用较新版本PEFT训练的LoRA适配器时,可能会遇到上述错误。这是因为较新版本的PEFT引入了exclude_modules参数,而旧版本不支持这个参数。
问题原因
这个错误的核心原因是版本不匹配。具体来说:
- 适配器是使用PEFT的主分支(开发版本)训练的,其中包含了
exclude_modules参数 - 而当前环境中安装的是PEFT的稳定版本(如0.13.2),该版本尚未包含这个新参数
 
解决方案
针对这个问题,有以下几种解决方法:
方法一:升级PEFT到开发版本
最直接的解决方案是将PEFT升级到最新的开发版本:
pip uninstall peft
pip install git+https://github.com/huggingface/peft
这将安装包含exclude_modules参数的最新开发版本(如peft-0.13.3.dev0)。
方法二:手动修改适配器配置
如果不想升级PEFT版本,可以手动编辑适配器的配置文件adapter_config.json,删除其中的exclude_modules相关行。
方法三:等待官方发布新版本
PEFT团队正在努力使配置向前兼容,未来版本将能自动处理这类问题。开发者可以关注官方更新。
相关注意事项
在使用LoRA进行微调时,还需要注意以下几点:
- 
模块名称匹配:确保
modules_to_save中指定的模块名称与模型实际结构完全一致。例如,对于Qwen2.5模型,正确的嵌入层名称是embed_tokens而非embed_token。 - 
词汇表大小:如果微调过程中修改了词汇表(如添加特殊token),需要确保
modules_to_save包含lm_head和embed_tokens,并且正确调整了嵌入层大小。 - 
版本一致性:训练和推理时应使用相同版本的PEFT库,以避免因版本差异导致的问题。
 
总结
PEFT库的LoRA技术为大型语言模型的高效微调提供了强大支持。遇到exclude_modules参数错误时,开发者可以通过升级PEFT版本或手动修改配置来解决。随着PEFT库的持续发展,这类兼容性问题将逐步减少,为开发者提供更流畅的体验。
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00