Supersonic项目中的SQL语义翻译问题分析与解决
问题背景
在Supersonic项目中,用户报告了一个关于SQL语义翻译的重要问题。当系统将用户输入的语义SQL转换为可执行的SQL语句时,出现了明显的语法错误和逻辑错误。具体表现为聚合函数的错误嵌套和WHERE条件被错误地转换为HAVING子句。
问题现象
用户提供的原始语义SQL是一个典型的聚合查询:
SELECT
sum(特困人数),
sum(低保人数),
sum(低保边缘人数),
sum(临时救助人数)
FROM
xxx
WHERE
街道名称 = 'xxxx'
AND 创建日期 > date_sub('2024-09-26', INTERVAL 7 day)
然而,系统将其错误地翻译为:
SELECT
SUM(SUM(poor_num)),
SUM(SUM(low_income_num)),
SUM(SUM(low_marginal_num)),
SUM(SUM(temp_rescue_num))
FROM
xxxx
GROUP BY
create_time,
street_name
HAVING
street_name = 'xxxx'
AND create_time > date_sub('2024-09-26', 7 *)
limit
1000
问题分析
这个翻译结果存在多个严重问题:
-
聚合函数错误嵌套:原始查询中的简单SUM聚合被错误地转换为双重SUM聚合(SUM(SUM(...))),这会导致计算结果完全错误。
-
条件语句位置错误:原始WHERE条件被错误地放到了HAVING子句中。WHERE和HAVING在SQL中有本质区别:
- WHERE在分组前过滤行
- HAVING在分组后过滤组
-
日期函数语法错误:INTERVAL关键字被错误地替换为"*"号,导致语法无效。
-
不必要的GROUP BY:原始查询没有分组需求,但翻译结果却添加了GROUP BY子句。
解决方案
针对这个问题,Supersonic项目团队在2024年10月11日通过两个提交(8374f22和b6e4577)修复了这个问题。修复后的翻译结果应该类似于:
SELECT
SUM(poor_num),
SUM(low_income_num),
SUM(low_marginal_num),
SUM(temp_rescue_num)
FROM
xxxx
WHERE
street_name = 'xxxx'
AND create_time > date_sub('2024-09-26', INTERVAL 7 day)
limit
1000
技术启示
这个案例揭示了SQL翻译引擎开发中的几个重要原则:
-
语义保持:翻译过程必须严格保持原始查询的语义,特别是聚合操作的层级。
-
上下文感知:需要准确识别查询的上下文,区分WHERE和HAVING的适用场景。
-
函数处理:特殊函数(如日期函数)需要特别处理,确保语法正确性。
-
最小改动:翻译过程应该只做必要的转换,避免添加不必要的语法元素(如本例中的GROUP BY)。
总结
Supersonic项目中遇到的这个SQL翻译问题,展示了自然语言到SQL转换过程中的典型挑战。通过这个案例,我们可以看到语义保持和语法正确性在查询翻译中的重要性。项目团队通过修复这个问题,提升了系统的可靠性和准确性,为用户提供了更好的查询体验。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00