Supersonic项目中的SQL语义翻译问题分析与解决
问题背景
在Supersonic项目中,用户报告了一个关于SQL语义翻译的重要问题。当系统将用户输入的语义SQL转换为可执行的SQL语句时,出现了明显的语法错误和逻辑错误。具体表现为聚合函数的错误嵌套和WHERE条件被错误地转换为HAVING子句。
问题现象
用户提供的原始语义SQL是一个典型的聚合查询:
SELECT
sum(特困人数),
sum(低保人数),
sum(低保边缘人数),
sum(临时救助人数)
FROM
xxx
WHERE
街道名称 = 'xxxx'
AND 创建日期 > date_sub('2024-09-26', INTERVAL 7 day)
然而,系统将其错误地翻译为:
SELECT
SUM(SUM(poor_num)),
SUM(SUM(low_income_num)),
SUM(SUM(low_marginal_num)),
SUM(SUM(temp_rescue_num))
FROM
xxxx
GROUP BY
create_time,
street_name
HAVING
street_name = 'xxxx'
AND create_time > date_sub('2024-09-26', 7 *)
limit
1000
问题分析
这个翻译结果存在多个严重问题:
-
聚合函数错误嵌套:原始查询中的简单SUM聚合被错误地转换为双重SUM聚合(SUM(SUM(...))),这会导致计算结果完全错误。
-
条件语句位置错误:原始WHERE条件被错误地放到了HAVING子句中。WHERE和HAVING在SQL中有本质区别:
- WHERE在分组前过滤行
- HAVING在分组后过滤组
-
日期函数语法错误:INTERVAL关键字被错误地替换为"*"号,导致语法无效。
-
不必要的GROUP BY:原始查询没有分组需求,但翻译结果却添加了GROUP BY子句。
解决方案
针对这个问题,Supersonic项目团队在2024年10月11日通过两个提交(8374f22和b6e4577)修复了这个问题。修复后的翻译结果应该类似于:
SELECT
SUM(poor_num),
SUM(low_income_num),
SUM(low_marginal_num),
SUM(temp_rescue_num)
FROM
xxxx
WHERE
street_name = 'xxxx'
AND create_time > date_sub('2024-09-26', INTERVAL 7 day)
limit
1000
技术启示
这个案例揭示了SQL翻译引擎开发中的几个重要原则:
-
语义保持:翻译过程必须严格保持原始查询的语义,特别是聚合操作的层级。
-
上下文感知:需要准确识别查询的上下文,区分WHERE和HAVING的适用场景。
-
函数处理:特殊函数(如日期函数)需要特别处理,确保语法正确性。
-
最小改动:翻译过程应该只做必要的转换,避免添加不必要的语法元素(如本例中的GROUP BY)。
总结
Supersonic项目中遇到的这个SQL翻译问题,展示了自然语言到SQL转换过程中的典型挑战。通过这个案例,我们可以看到语义保持和语法正确性在查询翻译中的重要性。项目团队通过修复这个问题,提升了系统的可靠性和准确性,为用户提供了更好的查询体验。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00