async-profiler中LiveObject模式下的堆栈追踪问题解析
2025-05-28 20:14:27作者:温艾琴Wonderful
背景介绍
async-profiler是一款广泛使用的Java性能分析工具,它能够以极低的开销收集CPU、内存分配等性能数据。其中,LiveObject功能是该工具的一个重要特性,它允许开发者追踪和分析JVM堆内存中的存活对象。
问题现象
在使用async-profiler进行内存分析时,当启用LiveObject模式后,部分分配事件的堆栈追踪(StackTrace)会出现丢失现象。具体表现为:
- 解析生成的JFR文件时,某些分配事件的StackTrace字段为null
- Java后端解析时抛出NullPointerException,因为无法获取到预期的堆栈信息
- 在IDEA等工具中查看JFR文件时,部分"Allocation in new TLAB"事件的StackTrace显示为空
问题根源分析
经过深入分析,发现问题的根本原因在于async-profiler当前的设计限制:
- 记录机制差异:在LiveObject模式下,记录分配事件时第二个参数被设置为0,而非实际分配大小
- 功能互斥:当前版本中,常规分配分析("jdk.ObjectAllocationInNewTLAB")与存活对象分析("profiler.LiveObject")不能同时正常工作
- 堆栈关联缺失:当只启用LiveObject模式时,部分分配事件未能正确关联到对应的调用堆栈
技术细节
在代码层面,问题主要出现在ObjectSampler类的recordAllocation方法中:
void ObjectSampler::recordAllocation(jvmtiEnv* jvmti, JNIEnv* jni, EventType event_type,
jobject object, jclass object_klass, jlong size) {
AllocEvent event;
event._total_size = size > _interval ? size : _interval;
event._instance_size = size;
event._class_id = lookupClassId(jvmti, object_klass);
if (_live) {
u64 trace = Profiler::instance()->recordSample(NULL, 0, event_type, &event);
live_refs.add(jni, object, size, trace);
} else {
Profiler::instance()->recordSample(NULL, event._total_size, event_type, &event);
}
}
当启用LiveObject模式(_live=true)时,recordSample方法的第二个参数(表示采样大小)被硬编码为0,这导致了后续堆栈追踪信息的丢失。
解决方案
项目维护者已经意识到这个问题,并在最新版本中提供了完整的修复方案:
- 统一记录机制:确保无论是否启用LiveObject模式,都能正确记录分配大小和堆栈信息
- 功能协同工作:现在可以同时进行常规分配分析和存活对象分析
- 兼容性保证:修复后的版本保持了对现有JFR解析工具的兼容性
最佳实践建议
对于需要使用async-profiler进行内存分析的用户,建议:
- 更新到包含此修复的最新版本
- 如果同时需要分配分析和存活对象分析,确保使用支持此功能组合的版本
- 在解析JFR文件时,对可能为null的StackTrace字段进行防御性编程
- 定期检查工具更新,以获取最新的功能改进和错误修复
总结
async-profiler作为一款高性能的Java分析工具,其LiveObject功能为内存分析提供了强大支持。通过理解并解决这个堆栈追踪丢失的问题,开发者可以更准确地分析Java应用的内存分配模式和对象存活情况。随着工具的持续改进,未来将提供更加完善和稳定的分析能力。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355