KubeSphere集群节点资源配置获取异常问题分析与解决
2025-05-14 09:27:22作者:乔或婵
问题背景
在使用KubeSphere管理Kubernetes集群时,管理员可能会遇到一个典型问题:KubeSphere控制台显示的节点资源配置与实际物理机配置不符。具体表现为控制台显示的CPU核心数和内存容量是实际物理机配置的两倍,这种情况会导致资源监控数据失真,影响集群资源管理和调度决策。
问题现象
通过KubeSphere控制台查看节点资源时,显示某节点配置为16核CPU/32GB内存,而实际云主机的物理配置仅为8核CPU/16GB内存。这种差异会导致以下问题:
- 资源监控图表显示不准确
- 工作负载调度依据错误数据
- 资源配额管理出现偏差
根本原因分析
经过深入排查,发现问题根源在于监控数据采集环节。具体原因如下:
- 双份node-exporter运行:在集群中同时存在KubeSphere自带的node-exporter和云服务商(如腾讯云TKE)提供的node-exporter
- 指标重复采集:Prometheus默认会采集所有node-exporter的指标数据,导致相同指标被重复计算
- 数据聚合错误:在计算节点总资源时,Prometheus会将两份node-exporter采集的数据相加,造成资源数值翻倍
解决方案
要解决这个问题,我们需要调整Prometheus的配置,使其只采集KubeSphere自身的node-exporter数据。具体步骤如下:
- 通过KubeSphere控制台找到"WhizardTelemetry Monitoring"扩展组件
- 修改"Extension Config"配置项
- 添加Prometheus的服务监控选择器配置
配置内容如下:
kube-prometheus-stack:
prometheusSpec:
serviceMonitorSelector:
matchLabels:
app.kubernetes.io/vendor: kubesphere
这个配置的作用是让Prometheus只选择带有app.kubernetes.io/vendor: kubesphere标签的ServiceMonitor,从而过滤掉云服务商提供的监控端点。
验证方法
实施解决方案后,可以通过以下方式验证问题是否解决:
-
Prometheus查询验证:
- 使用
count by (cluster, node) (node_cpu_seconds_total{mode="idle",job="node-exporter"})查询CPU核心数 - 使用
sum by (cluster, node) (node_memory_MemTotal_bytes{job="node-exporter"})查询内存总量
- 使用
-
KubeSphere控制台验证:
- 检查节点详情页面的资源配置显示
- 观察资源监控图表的数据变化
-
命令行验证:
- 使用
kubectl describe node查看节点资源容量 - 对比物理机实际配置
cat /proc/cpuinfo和free -m的输出
- 使用
最佳实践建议
为避免类似问题,建议在混合云环境中遵循以下最佳实践:
- 统一监控体系:在KubeSphere集群中,尽量使用单一的监控数据采集体系
- 标签管理:为所有监控资源添加清晰的标签,便于识别和管理
- 配置审核:在集群初始化时,检查并确认Prometheus的采集范围
- 定期检查:建立监控数据准确性的定期检查机制
总结
KubeSphere集群节点资源配置显示异常问题通常是由于监控数据重复采集导致的。通过合理配置Prometheus的服务监控选择器,可以确保资源数据的准确性。这个问题也提醒我们,在云原生环境中,各种组件的集成需要特别注意配置的兼容性和数据的一致性。掌握这些排查和解决问题的思路,对于维护生产环境的稳定性至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C045
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0122
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 开源电子设计自动化利器:KiCad EDA全方位使用指南 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
699
162
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
374
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
675
Ascend Extension for PyTorch
Python
243
281
React Native鸿蒙化仓库
JavaScript
271
328