MNN项目中BF16与Int8矩阵乘法性能测试方法解析
在深度学习推理框架MNN中,矩阵乘法(MatMul)作为核心计算操作之一,其性能优化至关重要。本文将详细介绍如何在MNN框架中测试两种特殊指令集加速的矩阵乘法:使用BFMMLA指令的BF16精度矩阵乘法和使用SMMLA指令的Int8矩阵乘法。
BF16矩阵乘法测试方法
BF16(Brain Float 16)是一种16位浮点格式,相比传统的FP32能减少内存占用并提升计算效率。MNN通过BFMMLA指令对其进行加速优化。
测试步骤如下:
-
编译配置:首先需要以支持BF16的模式编译MNN,在CMake配置中添加
-DMNN_SUPPORT_BF16=ON选项 -
测试代码:测试代码位于
test/speed/MatMulSpeed.cpp中的MatMulBConstTest函数,该函数专门用于测试BF16矩阵乘法性能 -
参数调整:根据实际需求修改测试代码中的矩阵维度参数,包括:
- 输入矩阵的行列数
- 输出矩阵的维度
- 是否转置等选项
-
执行测试:编译完成后,使用命令
./run_test.out speed/MatMulBConstTest 0 3运行测试,其中参数0 3表示使用BFMMLA指令
Int8矩阵乘法测试方法
Int8矩阵乘法利用8位整数计算,通过SMMLA指令实现加速,特别适合量化模型的推理加速。
测试步骤如下:
-
测试代码:相关测试位于
speed/ConvInt8/im2col_gemm中,这是将卷积运算通过im2col转换为矩阵乘法后进行的测试 -
参数配置:需要根据实际场景调整以下参数:
- 输入特征图的尺寸
- 卷积核大小
- 输入输出通道数
- 步长等超参数
-
执行测试:直接运行
./run_test.out speed/ConvInt8/im2col_gemm即可开始测试
性能测试注意事项
-
基准对比:建议同时测试FP32版本的性能作为基准,便于对比加速效果
-
预热迭代:测试时应包含足够的预热迭代次数,避免冷启动影响结果
-
多线程测试:可根据实际应用场景设置不同的线程数进行测试
-
结果验证:除了性能指标外,还应该验证计算结果的正确性,特别是低精度计算时
通过这两种测试方法,开发者可以全面评估MNN框架在不同精度矩阵乘法上的性能表现,为模型部署选择最优的计算精度和指令集提供依据。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00