Async-profiler在Linux环境下解析并发加载库的问题分析与解决方案
2025-05-28 10:49:34作者:咎竹峻Karen
背景介绍
在Java性能分析领域,async-profiler是一款广受欢迎的低开销性能分析工具。它能够通过采样方式收集Java应用的CPU使用情况、内存分配等指标。然而,在特定场景下,当工具尝试分析同时加载的共享库时,可能会遇到严重问题。
问题现象
开发团队在使用async-profiler的native内存分析功能(nativemem)时发现,当两个共享库被不同线程并发加载时,工具在解析重定位条目(relocation entries)时会出现异常。具体表现为工具有时会获取到未调整的偏移量而非重定位后的正确地址,最终可能导致JVM崩溃。
技术分析
并发加载机制
在Linux系统中,动态链接器负责共享库的加载和链接。当多个线程同时尝试加载不同库时,会出现复杂的并发场景:
- 动态链接器使用dl_load_lock来保护加载操作
- 而dl_iterate_phdr则使用dl_load_write_lock进行保护
- 这两个不同的锁机制导致了潜在的竞态条件
问题复现场景
通过深入分析,可以还原出以下导致崩溃的执行序列:
- 线程1开始加载库A
- 触发async-profiler的dlopen钩子
- 库A加载完成
- 线程2开始加载库B
- 库B被映射到内存但尚未完成重定位
- 线程1执行符号表更新,发现库B并开始解析
- 线程1修改库B的GOT表中malloc条目
- 线程2完成库B的链接,再次更新GOT表
- 导致malloc的目标地址无效
- 后续调用malloc时发生崩溃
解决方案
根本原因
问题的核心在于async-profiler尝试解析尚未完全加载完成的库。现有的dl_iterate_phdr机制虽然能防止库卸载时的并发问题,但无法处理库加载过程中的并发情况。
修复方案
修复方案的关键改进点是确保只解析已知完全加载的库。具体实现包括:
- 通过dl_iterate_phdr获取已完全加载的库列表
- 仅对这些确认加载完成的库进行解析
- 避免在库加载过程中进行任何符号表或重定位表的修改
技术影响
这一修复不仅解决了GraalVM环境下的崩溃问题,还增强了async-profiler在以下方面的可靠性:
- 多线程环境下库加载的稳定性
- 对复杂JVM实现(如GraalVM)的兼容性
- 长时间性能分析任务的成功率
最佳实践建议
对于需要在生产环境使用async-profiler的用户,建议:
- 更新到包含此修复的版本
- 在GraalVM环境中特别注意native内存分析功能的使用
- 监控分析过程中的异常情况
- 考虑在非高峰期执行包含nativemem选项的分析任务
这一问题的解决体现了async-profiler项目对稳定性和可靠性的持续追求,也为复杂环境下的性能分析工具开发提供了有价值的经验。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
521
3.71 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
暂无简介
Dart
762
184
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
742
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
16
1
React Native鸿蒙化仓库
JavaScript
302
349
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1