Async-profiler在Linux环境下解析并发加载库的问题分析与解决方案
2025-05-28 00:11:30作者:咎竹峻Karen
背景介绍
在Java性能分析领域,async-profiler是一款广受欢迎的低开销性能分析工具。它能够通过采样方式收集Java应用的CPU使用情况、内存分配等指标。然而,在特定场景下,当工具尝试分析同时加载的共享库时,可能会遇到严重问题。
问题现象
开发团队在使用async-profiler的native内存分析功能(nativemem)时发现,当两个共享库被不同线程并发加载时,工具在解析重定位条目(relocation entries)时会出现异常。具体表现为工具有时会获取到未调整的偏移量而非重定位后的正确地址,最终可能导致JVM崩溃。
技术分析
并发加载机制
在Linux系统中,动态链接器负责共享库的加载和链接。当多个线程同时尝试加载不同库时,会出现复杂的并发场景:
- 动态链接器使用dl_load_lock来保护加载操作
- 而dl_iterate_phdr则使用dl_load_write_lock进行保护
- 这两个不同的锁机制导致了潜在的竞态条件
问题复现场景
通过深入分析,可以还原出以下导致崩溃的执行序列:
- 线程1开始加载库A
- 触发async-profiler的dlopen钩子
- 库A加载完成
- 线程2开始加载库B
- 库B被映射到内存但尚未完成重定位
- 线程1执行符号表更新,发现库B并开始解析
- 线程1修改库B的GOT表中malloc条目
- 线程2完成库B的链接,再次更新GOT表
- 导致malloc的目标地址无效
- 后续调用malloc时发生崩溃
解决方案
根本原因
问题的核心在于async-profiler尝试解析尚未完全加载完成的库。现有的dl_iterate_phdr机制虽然能防止库卸载时的并发问题,但无法处理库加载过程中的并发情况。
修复方案
修复方案的关键改进点是确保只解析已知完全加载的库。具体实现包括:
- 通过dl_iterate_phdr获取已完全加载的库列表
- 仅对这些确认加载完成的库进行解析
- 避免在库加载过程中进行任何符号表或重定位表的修改
技术影响
这一修复不仅解决了GraalVM环境下的崩溃问题,还增强了async-profiler在以下方面的可靠性:
- 多线程环境下库加载的稳定性
- 对复杂JVM实现(如GraalVM)的兼容性
- 长时间性能分析任务的成功率
最佳实践建议
对于需要在生产环境使用async-profiler的用户,建议:
- 更新到包含此修复的版本
- 在GraalVM环境中特别注意native内存分析功能的使用
- 监控分析过程中的异常情况
- 考虑在非高峰期执行包含nativemem选项的分析任务
这一问题的解决体现了async-profiler项目对稳定性和可靠性的持续追求,也为复杂环境下的性能分析工具开发提供了有价值的经验。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 Python案例资源下载 - 从入门到精通的完整项目代码合集 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 QT连接阿里云MySQL数据库完整指南:从环境配置到问题解决 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 Python开发者的macOS终极指南:VSCode安装配置全攻略 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 STM32到GD32项目移植完全指南:从兼容性到实战技巧
项目优选
收起
deepin linux kernel
C
24
9
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
402
3.12 K
Ascend Extension for PyTorch
Python
224
249
暂无简介
Dart
672
159
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
663
315
React Native鸿蒙化仓库
JavaScript
262
324
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.2 K
655
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
219