探索精准三维人脸重建:REALY Benchmark
2024-06-08 21:49:19作者:丁柯新Fawn
在计算机视觉和人工智能领域中,3D人脸识别技术已经成为一个不可或缺的组成部分。它广泛应用于生物识别、虚拟现实和娱乐等多个行业。然而,对于3D人脸重建方法的评估标准,长期以来都存在一些不足之处。为此,我们带来了REALY Benchmark——一个基于LYHM Benchmark的,区域感知的3D脸部重建评估框架。这个项目旨在通过一个精细粒度的标准化均方误差(NMSE)来衡量在受控图像集上的重建效果。

项目介绍
REALY Benchmark不仅仅是一个评估工具,它是一套全新的评价标准,专注于对鼻子、嘴巴、额头和脸颊等关键面部区域进行细节比较。通过与原始扫描数据的对比,它可以为研究者提供更深入、准确的性能评估,帮助改进算法并推动领域的进步。
技术分析
该项目提供了详尽的评价指标,包括全局对齐后的SP和变形SH,以及错误地图,这些都是通过计算预测模型与地面真实模型之间的差异得出的。REALY还引入了扩展至85个点的barycentric坐标系统,以提高对脸部特征的精确捕捉,从而实现更准确的匹配和评估。
应用场景
无论你是研究人员、工程师还是学生,如果你正在致力于3D人脸识别或相关技术的研究,REALY都是一个理想的选择。这个基准可以用于:
- 测试和优化你的3D人脸重建算法
- 对不同方法的结果进行公正的比较
- 发表研究成果时提供有力的数据支持
项目特点
- 区域感知:针对特定面部区域的细化评估,揭示方法的优缺点。
- 易用性:无需GPU,兼容Windows、macOS和Ubuntu环境,便于快速安装和运行。
- 开放源代码:完全免费且开源,允许研究人员公开访问和贡献。
- 全面评估:不仅有全局评估,还有局部评估,提供全面的性能指标。
为了开始使用,确保遵循项目文档中的安装和评估步骤。如有任何问题,可以直接联系项目作者Zenghao Chai或Linchao Bao获取支持。
最后,如果你在工作中使用了REALY Benchmark,请引用以下文献:
@inproceedings{REALY,
title={REALY: Rethinking the Evaluation of 3D Face Reconstruction},
author={Chai, Zenghao and Zhang, Haoxian and Ren, Jing and Kang, Di and Xu, Zhengzhuo and Zhe, Xuefei and Yuan, Chun and Bao, Linchao},
booktitle = {Proceedings of the European Conference on Computer Vision (ECCV)},
year = {2022}
}
让我们一起重新定义3D人脸识别的评估标准,并共同推进这一领域的边界!
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.81 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
878