AIMET量化模型输出文件解析与编码理解
2025-07-02 06:35:37作者:盛欣凯Ernestine
概述
在深度学习模型量化过程中,AIMET工具包提供了强大的量化功能。当用户执行sim.export()
操作后,系统会生成多个输出文件,包括.encodings
、_torch.encodings
、.onnx
和.pth
文件。这些文件各司其职,共同构成了量化模型部署的基础。
输出文件详解
1. 编码文件类型与作用
AIMET会生成两种编码文件,它们虽然都包含量化信息,但用途和结构存在显著差异:
Pytorch编码文件(_torch.encodings
):
- 该文件将Pytorch量化模型中的各层与激活值、参数编码建立映射关系
- 激活编码采用层级字典结构:顶层键为层名称,下层区分输入/输出,最内层为具体张量的编码
- 参数编码直接映射torch参数名到对应编码
- 主要用途:保存编码信息以便后续直接加载到新的quantsim对象,避免重复校准过程
ONNX编码文件(.encodings
):
- 与导出的
.onnx
文件配合使用,用于目标部署平台 - 编码名称与ONNX计算图中的张量名称一一对应
- 主要用途:为部署栈提供必要的量化信息
2. 编码内容差异分析
虽然两种编码文件包含相同的量化信息,但其组织结构反映了不同的框架视角:
- Pytorch编码文件采用"层中心"视图,反映模型的结构化层次
- ONNX编码文件采用"张量中心"视图,反映计算图的数据流
- 相同的量化参数(如scale、offset)会出现在两个文件中,但被不同的命名体系引用
3. 量化值计算原理
虽然当前版本不直接导出int8量化值,但用户可以通过编码信息自行计算:
量化公式为:
quantized_tensor = round(clamp(fp_tensor, min, max) / scale) - offset
其中:
clamp
操作确保浮点值处于[min,max]范围内scale
和offset
由编码文件提供round
实现浮点到整数的转换
技术实现建议
对于希望深入使用这些文件的开发者,建议:
- 模型移植场景:优先使用ONNX编码文件配合.onnx模型,确保部署一致性
- 实验研究场景:使用Pytorch编码文件可以快速重建量化环境
- 自定义量化:理解编码结构后,可以手动调整特定层的量化参数
- 验证流程:比较两个编码文件中的对应参数,确保量化一致性
总结
AIMET的量化输出文件体系设计考虑了从研发到部署的全流程需求。理解这些文件的差异和联系,有助于开发者更高效地实现模型量化工作流。随着量化技术的演进,这些文件的格式和功能可能会继续丰富,但其核心设计理念——区分框架相关和部署相关的量化信息——将保持稳定。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0113AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
216
2.23 K

暂无简介
Dart
521
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
981
580

Ascend Extension for PyTorch
Python
66
97

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
564
87

React Native鸿蒙化仓库
JavaScript
210
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
195

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399