MNN项目中Qwen-1.8B-Chat模型导出与Android部署问题解析
2025-05-22 21:51:40作者:昌雅子Ethen
问题背景
在使用MNN框架部署Qwen-1.8B-Chat模型到Android平台时,开发者遇到了模型导出和运行的问题。具体表现为:导出的模型在Android应用中无法正常输出结果,甚至出现崩溃情况。
模型导出过程分析
初始导出尝试
开发者最初尝试使用分段导出方式,命令如下:
python llm_export.py \
--path ../../modes/Qwen-1_8B-Chat \
--type Qwen-1_8B-Chat \
--export_split \
--export_token \
--export_mnn \
--mnn_path ./qwen18b-chat-mnn \
--onnx_path ./qwen18b-chat-onnx \
--embed_bin \
--embed_bf16
这种导出方式生成了多个block文件,但在Android应用中运行时没有任何输出。
问题诊断
-
配置文件缺失:分段模型需要额外的配置文件
config.json,其中需要包含以下关键参数:{ "is_single": false, "backend_type": "cpu", "thread_num": 4, "precision": "low", "memory": "low" } -
资源文件不完整:MNN目录下缺少
embeddings_bf16.bin和tokenizer.txt文件,需要从ONNX目录手动拷贝。
解决方案探索
非分段导出方式
仓库协作者建议使用非分段导出方式,命令调整为:
python llm_export.py \
--path ../../modes/Qwen-1_8B-Chat \
--type Qwen-1_8B-Chat \
--export \
--export_token \
--export_mnn \
--mnn_path ./qwen18b-chat-mnn \
--onnx_path ./qwen18b-chat-onnx \
--embed_bin \
--embed_bf16 \
--export_embed
关键变化:
- 移除
--export_split参数 - 增加
--export_embed参数确保嵌入文件生成
文件差异分析
使用不同仓库的导出工具会产生不同大小的权重文件:
- llm-export仓库:
llm.mnn.weight大小为768MB - MNN仓库:
llm.mnn.weight大小为765MB
这种差异可能源于不同仓库的导出实现细节,建议优先使用MNN主仓库的导出工具。
Android部署问题
崩溃分析
部署到Android后出现SIGSEGV错误,可能原因包括:
- 模型文件不完整或损坏
- 内存不足
- 模型权重文件版本不匹配
解决建议
- 统一导出工具:使用MNN主仓库的导出工具
- 完整文件检查:确保包含以下文件:
llm.mnnllm.mnn.weightembeddings_bf16.bintokenizer.txt
- 内存管理:检查Android应用内存分配,大模型需要足够内存
- 日志分析:增加详细日志定位崩溃点
最佳实践总结
- 对于Qwen-1.8B-Chat模型,推荐使用非分段导出方式
- 导出命令应包含
--export_embed参数 - 优先使用MNN主仓库的导出工具
- Android部署前验证模型文件的完整性和一致性
- 注意移动端设备的资源限制,适当调整线程数和内存参数
通过以上方法,开发者可以更稳定地将Qwen-1.8B-Chat模型部署到Android平台,并避免常见的导出和运行问题。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 TortoiseSVN 1.14.5.29465 中文版:高效版本控制的终极解决方案 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Solidcam后处理文件下载与使用完全指南:提升CNC编程效率的必备资源 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Launch4j中文版:Java应用程序打包成EXE的终极解决方案
项目优选
收起
deepin linux kernel
C
24
9
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
20
暂无简介
Dart
659
150
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.17 K
644
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
657
293
仓颉编译器源码及 cjdb 调试工具。
C++
131
865
React Native鸿蒙化仓库
JavaScript
251
320
仓颉编程语言运行时与标准库。
Cangjie
138
874