RDKit中Rascal MCES算法的原子匹配问题分析
问题背景
在化学信息学领域,分子比较是一个基础而重要的任务。RDKit作为一款广泛使用的化学信息学工具包,其Rascal MCES(最大公共边诱导子结构)算法用于寻找两个分子之间的最大公共子结构。然而,在某些特定情况下,该算法会出现原子匹配不完整的问题。
问题现象
用户在使用RDKit 2024.09.5版本时,发现了两个典型的Rascal MCES算法匹配异常案例:
-
案例一:在比较两个含有联吡啶结构的分子时,算法返回的MCES结果中,前三个匹配包含20个原子,最后一个只包含19个原子。用户期望最佳匹配应包含22个原子,特别是应该包含(13,14)和(17,16)的原子匹配。
-
案例二:在比较两个含有三环结构的分子时,算法返回的第三个MCES结果比前两个少匹配了一个原子。
技术分析
经过深入分析,发现这些问题源于算法在singleLargestFrag=True模式下的一个优化缺陷。该优化基于以下假设:在单一大片段匹配模式下,分子1中键A1到A2的距离必须与分子2中键B1到B2的距离相同(当A1匹配B1且A2匹配B2时)。
这一假设虽然能显著提高搜索速度(因为它可以预先排除大量不匹配的键),但存在局限性。具体来说,在单一大片段模式下,算法使用的是最短路径距离。而在用户提供的分子案例中,这种距离计算方式会导致问题:
-
在第一个案例中,吲哚结构中键10到键15存在一条通过原子13的较短路径,但在喹啉结构中(对应键10到键16)这条路径不可用。
-
这种距离不一致导致算法错误地排除了本应匹配的原子对。
解决方案
针对这一问题,开发团队提出了改进方案:
-
距离计算优化:不再仅检查最短路径距离是否相同,而是检查是否存在任何相同长度的路径连接两个键。
-
模式选择建议:当用户遇到类似问题时,可以尝试将
singleLargestFrag参数设为False,这样算法会返回更完整的匹配结果,尽管计算时间可能增加。
技术启示
这一案例揭示了化学信息学算法开发中的几个重要考量:
-
优化假设验证:任何算法优化都应仔细验证其假设条件是否在所有情况下都成立。
-
距离度量选择:在分子比较中,路径距离的计算方式会显著影响匹配结果,需要选择最适合特定应用场景的度量方式。
-
参数敏感性:算法参数如
singleLargestFrag可能对结果产生重大影响,用户应充分理解其含义。
总结
RDKit的Rascal MCES算法在大多数情况下表现良好,但在特定分子结构下可能出现匹配不完整的问题。通过理解算法的工作原理和限制条件,用户可以更好地解释结果并根据需要调整参数。开发团队已针对这一问题提出了修复方案,这将进一步提高算法的鲁棒性和准确性。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00