RDKit中Rascal MCES算法的原子匹配问题分析
问题背景
在化学信息学领域,分子比较是一个基础而重要的任务。RDKit作为一款广泛使用的化学信息学工具包,其Rascal MCES(最大公共边诱导子结构)算法用于寻找两个分子之间的最大公共子结构。然而,在某些特定情况下,该算法会出现原子匹配不完整的问题。
问题现象
用户在使用RDKit 2024.09.5版本时,发现了两个典型的Rascal MCES算法匹配异常案例:
-
案例一:在比较两个含有联吡啶结构的分子时,算法返回的MCES结果中,前三个匹配包含20个原子,最后一个只包含19个原子。用户期望最佳匹配应包含22个原子,特别是应该包含(13,14)和(17,16)的原子匹配。
-
案例二:在比较两个含有三环结构的分子时,算法返回的第三个MCES结果比前两个少匹配了一个原子。
技术分析
经过深入分析,发现这些问题源于算法在singleLargestFrag=True模式下的一个优化缺陷。该优化基于以下假设:在单一大片段匹配模式下,分子1中键A1到A2的距离必须与分子2中键B1到B2的距离相同(当A1匹配B1且A2匹配B2时)。
这一假设虽然能显著提高搜索速度(因为它可以预先排除大量不匹配的键),但存在局限性。具体来说,在单一大片段模式下,算法使用的是最短路径距离。而在用户提供的分子案例中,这种距离计算方式会导致问题:
-
在第一个案例中,吲哚结构中键10到键15存在一条通过原子13的较短路径,但在喹啉结构中(对应键10到键16)这条路径不可用。
-
这种距离不一致导致算法错误地排除了本应匹配的原子对。
解决方案
针对这一问题,开发团队提出了改进方案:
-
距离计算优化:不再仅检查最短路径距离是否相同,而是检查是否存在任何相同长度的路径连接两个键。
-
模式选择建议:当用户遇到类似问题时,可以尝试将
singleLargestFrag参数设为False,这样算法会返回更完整的匹配结果,尽管计算时间可能增加。
技术启示
这一案例揭示了化学信息学算法开发中的几个重要考量:
-
优化假设验证:任何算法优化都应仔细验证其假设条件是否在所有情况下都成立。
-
距离度量选择:在分子比较中,路径距离的计算方式会显著影响匹配结果,需要选择最适合特定应用场景的度量方式。
-
参数敏感性:算法参数如
singleLargestFrag可能对结果产生重大影响,用户应充分理解其含义。
总结
RDKit的Rascal MCES算法在大多数情况下表现良好,但在特定分子结构下可能出现匹配不完整的问题。通过理解算法的工作原理和限制条件,用户可以更好地解释结果并根据需要调整参数。开发团队已针对这一问题提出了修复方案,这将进一步提高算法的鲁棒性和准确性。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00