RDKit中Rascal MCES算法的原子匹配问题分析
问题背景
在化学信息学领域,分子比较是一个基础而重要的任务。RDKit作为一款广泛使用的化学信息学工具包,其Rascal MCES(最大公共边诱导子结构)算法用于寻找两个分子之间的最大公共子结构。然而,在某些特定情况下,该算法会出现原子匹配不完整的问题。
问题现象
用户在使用RDKit 2024.09.5版本时,发现了两个典型的Rascal MCES算法匹配异常案例:
- 
案例一:在比较两个含有联吡啶结构的分子时,算法返回的MCES结果中,前三个匹配包含20个原子,最后一个只包含19个原子。用户期望最佳匹配应包含22个原子,特别是应该包含(13,14)和(17,16)的原子匹配。 
- 
案例二:在比较两个含有三环结构的分子时,算法返回的第三个MCES结果比前两个少匹配了一个原子。 
技术分析
经过深入分析,发现这些问题源于算法在singleLargestFrag=True模式下的一个优化缺陷。该优化基于以下假设:在单一大片段匹配模式下,分子1中键A1到A2的距离必须与分子2中键B1到B2的距离相同(当A1匹配B1且A2匹配B2时)。
这一假设虽然能显著提高搜索速度(因为它可以预先排除大量不匹配的键),但存在局限性。具体来说,在单一大片段模式下,算法使用的是最短路径距离。而在用户提供的分子案例中,这种距离计算方式会导致问题:
- 
在第一个案例中,吲哚结构中键10到键15存在一条通过原子13的较短路径,但在喹啉结构中(对应键10到键16)这条路径不可用。 
- 
这种距离不一致导致算法错误地排除了本应匹配的原子对。 
解决方案
针对这一问题,开发团队提出了改进方案:
- 
距离计算优化:不再仅检查最短路径距离是否相同,而是检查是否存在任何相同长度的路径连接两个键。 
- 
模式选择建议:当用户遇到类似问题时,可以尝试将 singleLargestFrag参数设为False,这样算法会返回更完整的匹配结果,尽管计算时间可能增加。
技术启示
这一案例揭示了化学信息学算法开发中的几个重要考量:
- 
优化假设验证:任何算法优化都应仔细验证其假设条件是否在所有情况下都成立。 
- 
距离度量选择:在分子比较中,路径距离的计算方式会显著影响匹配结果,需要选择最适合特定应用场景的度量方式。 
- 
参数敏感性:算法参数如 singleLargestFrag可能对结果产生重大影响,用户应充分理解其含义。
总结
RDKit的Rascal MCES算法在大多数情况下表现良好,但在特定分子结构下可能出现匹配不完整的问题。通过理解算法的工作原理和限制条件,用户可以更好地解释结果并根据需要调整参数。开发团队已针对这一问题提出了修复方案,这将进一步提高算法的鲁棒性和准确性。
 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00 PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00 openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00 HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03 AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00 Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00 GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00 Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
 docs
docs kernel
kernel flutter_flutter
flutter_flutter ops-math
ops-math pytorch
pytorch cangjie_tools
cangjie_tools ohos_react_native
ohos_react_native RuoYi-Vue3
RuoYi-Vue3 cangjie_compiler
cangjie_compiler Cangjie-Examples
Cangjie-Examples