首页
/ CUTLASS中Grouped GEMM调度机制深度解析

CUTLASS中Grouped GEMM调度机制深度解析

2025-05-30 18:39:27作者:韦蓉瑛

理解GroupedProblemVisitor.next_tile()的工作原理

在NVIDIA CUTLASS库中,Grouped GEMM(分组矩阵乘法)是一种高效处理多个不同尺寸矩阵乘法的技术。其中GroupedProblemVisitor.next_tile()方法是调度机制的核心,理解其工作原理对于优化GEMM操作至关重要。

调度机制概述

Grouped GEMM的调度采用了一种创新的"persistent thread block"(持久线程块)设计模式。这种设计允许多个线程块协作处理一组GEMM问题,而不是传统的每个线程块独立处理一个GEMM问题的方式。

关键调度流程

  1. 问题分配策略:系统将所有GEMM问题平铺到一个虚拟的二维网格中,其中x维度对应M方向,y维度对应N方向。每个线程块负责处理这个虚拟网格中的一个或多个tile。

  2. 线程块工作模式:每个线程块会循环处理分配给它的多个tile。在每次循环中,通过next_tile()方法获取下一个要处理的tile信息,包括:

    • 当前处理的GEMM问题尺寸(m,n,k)
    • 问题索引(problem_idx)
    • 线程块在当前问题中的位置(threadblock_idx)
    • 当前问题的网格形状(grid_shape)
  3. tile处理逻辑:线程块根据获取的tile信息计算其在全局矩阵中的偏移量(threadblock_offset),这个偏移量用于确定当前线程块负责计算的矩阵区域。

调度特点分析

  1. 负载均衡:调度器会均匀地将所有GEMM问题的tile分配给可用的线程块。这意味着一个线程块可能处理来自不同GEMM问题的tile,确保所有计算资源得到充分利用。

  2. 问题交错处理:从示例输出可以看出,线程块0和线程块1交替处理不同GEMM问题的tile(如问题0、问题2、问题4等)。这种交错处理方式确保了所有问题都能得到并行处理,而不是顺序完成一个再处理下一个。

  3. 网格划分:每个GEMM问题根据其尺寸被划分为多个tile。例如,对于m=1024,n=2048的问题,使用128x128的tile大小时,会被划分为8x16=128个tile(x方向8个,y方向16个)。

实现细节深入

  1. 线程块索引计算:线程块在问题网格中的位置通过简单的整数除法计算得出:

    • x方向位置 = threadblock_idx / grid_shape.n()
    • y方向位置 = threadblock_idx % grid_shape.n()
  2. 全局偏移计算:基于线程块位置和tile尺寸计算出当前tile在全局矩阵中的起始位置:

    • m方向偏移 = x位置 * Mma::Shape::kM
    • n方向偏移 = y位置 * Mma::Shape::kN
  3. warp级分工:在更细粒度上,每个warp负责处理tile中的一个子区域。这种层次化的分工(线程块→warp→线程)实现了高效的任务并行和数据并行。

性能优化考虑

  1. 数据局部性:调度器设计考虑了数据局部性,相邻线程块处理的tile通常在矩阵空间上也相邻,有利于缓存利用。

  2. 资源利用率:通过让线程块处理多个tile,减少了线程块启动开销,提高了GPU计算单元的利用率。

  3. 灵活性:支持处理不同尺寸的GEMM问题,自动适应各种计算需求。

理解这些调度机制对于在CUTLASS上实现高性能矩阵乘法至关重要,也为开发者提供了优化自定义GEMM操作的思路。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
136
1.89 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
71
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.28 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
918
551
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
46
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16