Deformable-DETR项目中提取各类别mAP指标的方法详解
2025-06-22 18:10:49作者:董灵辛Dennis
在目标检测模型的评估过程中,mAP(mean Average Precision)是最常用的评估指标之一。然而在实际应用中,我们往往不仅需要知道模型的整体性能,还需要了解模型在每个具体类别上的表现。本文将详细介绍在Deformable-DETR项目中如何提取每个类别的mAP值。
为什么需要各类别mAP
整体mAP虽然能反映模型的综合性能,但会掩盖模型在不同类别上的表现差异。通过分析各类别的mAP,我们可以:
- 发现模型在哪些类别上表现不佳,从而有针对性地改进
- 评估模型对不同类别特征的捕捉能力
- 识别数据集中可能存在的不平衡问题
- 为模型优化提供更精确的方向
实现方法
在Deformable-DETR项目中,我们可以通过修改评估代码来获取各类别的mAP值。具体实现步骤如下:
- 在模型评估过程中,首先完成常规的预测结果累积和汇总
- 然后从COCO评估器中提取各类别的精度数据
- 对每个类别单独计算平均精度(AP)
- 最后以表格形式输出结果
代码实现细节
关键修改位于评估引擎(engine.py)中,主要增加了以下功能:
# 在常规评估之后添加类别级评估
if coco_evaluator is not None:
coco_evaluator.accumulate()
coco_evaluator.summarize()
# 新增的类别级评估代码
classwise = True
if classwise:
cocoEval = coco_evaluator.coco_eval['bbox']
coco = coco_evaluator.coco_eval['bbox'].cocoDt
# 获取所有类别的精度数据
precisions = cocoEval.eval['precision']
catIds = coco.getCatIds()
# 对每个类别计算AP
results_per_category = []
for idx, catId in enumerate(catIds):
nm = coco.loadCats(catId)[0]
precision = precisions[:, :, idx, 0, -1]
precision = precision[precision > -1]
ap = np.mean(precision) if precision.size else float('nan')
results_per_category.append(
('{}'.format(nm['name']),
'{:0.3f}'.format(float(ap * 100))))
# 格式化输出结果
N_COLS = min(6, len(results_per_category) * 2)
results_flatten = list(itertools.chain(*results_per_category))
headers = ['category', 'AP'] * (N_COLS // 2)
results_2d = itertools.zip_longest(
*[results_flatten[i::N_COLS] for i in range(N_COLS)])
table_data = [headers]
table_data += [result for result in results_2d]
table = AsciiTable(table_data)
print(table.table)
技术要点解析
-
精度数据维度:COCO评估器中的precision数据是一个5维数组,分别对应IoU阈值、召回率、类别、面积范围和最大检测数。
-
类别ID处理:通过
coco.getCatIds()获取数据集中所有类别的ID,然后使用coco.loadCats()加载类别名称。 -
AP计算:对于每个类别,从精度数据中提取对应类别的数据,过滤无效值(-1),然后计算平均值得到AP。
-
结果展示:使用表格形式输出结果,确保可读性,自动调整列数以适应终端显示。
实际应用建议
-
可以将此功能封装为评估器的一个可选参数,方便控制是否输出类别级结果。
-
对于类别较多的数据集,建议将结果保存到文件而非仅打印到终端。
-
可以进一步扩展功能,如计算各类别的召回率、精确率等其他指标。
-
结合可视化工具,将各类别表现以图表形式展示,更直观地发现模型优缺点。
总结
通过上述方法,我们可以在Deformable-DETR项目中方便地获取各类别的mAP值,为模型分析和优化提供更细致的数据支持。这种细粒度的性能分析对于提升模型在实际应用中的表现至关重要,特别是在处理类别不平衡或需要特定类别高精度的应用场景时。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355