XRWaterfallLayout 教程
1. 项目介绍
XRWaterfallLayout 是一个适用于 iOS 平台的 UICollectionView 自定义布局库,它实现了类似图片分享平台的瀑布流布局效果。这个布局库允许你在 UICollectionView 中创建动态多列布局,支持不同区域的不同列数,具有高性能并且易于集成。
主要特性
- 类似图片分享平台的瀑布流布局
- 支持不同区域不同的列数
- 高性能,即使在大量数据项下依然流畅
- 容易集成,尽量保持与 UICollectionViewFlowLayout 相似的使用方式
- 自定义头部和尾部视图
- 兼容 iOS 9 及以上版本,Objective-C 和 Swift 语言
2. 项目快速启动
依赖管理安装
CocoaPods
在你的 Podfile 文件中添加以下内容:
pod 'XRWaterfallLayout'
然后运行 pod install 来安装。
Swift Package Manager
在 Xcode 项目中选择 File > Swift Packages > Add Package Dependency...,输入仓库 URL:
https://github.com/codingZero/XRWaterfallLayout.git
选择所需的分支或版本后,等待其下载并添加到你的项目中。
示例代码
在你的 UICollectionView 的数据源类中实现必要的方法:
import UIKit
import XRWaterfallLayout // 如果使用Swift
class ViewController: UIViewController, UICollectionViewDataSource {
let collectionView = UICollectionView(frame: .zero, collectionViewLayout: XRWaterfallLayout(columnCount: 2))
override func viewDidLoad() {
super.viewDidLoad()
collectionView.dataSource = self
view.addSubview(collectionView)
}
// 数据源方法示例
func numberOfSections(in collectionView: UICollectionView) -> Int {
return 3
}
func collectionView(_ collectionView: UICollectionView, numberOfItemsInSection section: Int) -> Int {
return 10 // 返回对应section的数据数量
}
func collectionView(_ collectionView: UICollectionView, cellForItemAt indexPath: IndexPath) -> UICollectionViewCell {
let cell = collectionView.dequeueReusableCell(withReuseIdentifier: "Cell", for: indexPath)
return cell
}
}
确保在 Interface Builder 或代码中为 UICollectionView 设置正确的约束。
3. 应用案例和最佳实践
在实际开发中,你可以根据需求调整瀑布流布局的列数、间距等属性。例如,可以在不同屏幕尺寸下动态改变列数,或者在不同数据类型之间切换布局样式。为了优化性能,预先计算好每个单元格的大小,避免频繁调用 - (CGSize)collectionView:(UICollectionView *)collectionView layout:(UICollectionViewLayout *)collectionViewLayout sizeForItemAtIndexPath:(NSIndexPath *)indexPath 方法。
4. 典型生态项目
虽然 XRWaterfallLayout 本身就是一个独立的布局库,但它可以与许多其他 iOS 开源项目结合使用,如图片加载库(如 SDWebImage 或 Kingfisher)来加载瀑布流中的图像。此外,可以结合 MVVM 模式,将布局逻辑从视图控制器中解耦,提高代码可读性和复用性。
由于该项目并未提供相关的生态项目列表,此处无法给出具体的生态项目示例。然而,你可以搜索 GitHub 上与 UICollectionView、瀑布流布局相关的话题,找到其他开发者如何结合使用这些技术的实例。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00