Jeecg-Boot项目中字典表翻译性能优化实践
2025-05-03 04:15:59作者:裘旻烁
背景介绍
在Jeecg-Boot项目开发过程中,我们经常会遇到需要将数据库中的字典值转换为用户友好的显示文本的需求。这种字典翻译功能在数据导出场景下尤为重要,但当数据量较大时(如数万条记录),传统的字符串处理方式会导致严重的性能问题。
问题分析
原有实现机制
Jeecg-Boot原有的字典翻译实现主要采用以下方式:
- 将字典数据查询结果转换为字符串数组
- 使用字符串分割操作进行键值匹配
- 通过循环遍历实现值替换
这种实现方式在处理少量数据时表现尚可,但当面对以下场景时会出现严重性能瓶颈:
- 字典表数据量大(如2万条)
- 导出数据量大(如3万条)
- 每条记录需要多个字典项翻译
性能瓶颈点
- 字符串分割开销:每次翻译都需要对字典键值对进行字符串分割
- 线性查找效率低:使用数组遍历方式进行匹配,时间复杂度为O(n)
- 重复计算:相同的字典查询结果会被反复处理
优化方案
核心思路
将原有的字符串数组处理方式改为使用HashMap存储字典数据,利用哈希表O(1)的查找特性大幅提升翻译性能。
具体实现
- 接口设计:
public interface AutoPoiDictMapServiceI {
public HashMap<String,String> queryDict(String dicTable, String dicCode,
String dicText, boolean isKeyValue);
}
- 服务实现:
@Service
public class AutoPoiDictMapConfig implements AutoPoiDictMapServiceI {
public HashMap<String, String> queryDict(String dicTable, String dicCode,
String dicText, boolean isKeyValue) {
HashMap<String, String> dictReplaces = new HashMap<>();
// 查询字典数据
List<DictModel> dictList = queryDictData(dicTable, dicCode, dicText);
// 构建HashMap
for (DictModel t : dictList) {
if (t != null && t.getText() != null && t.getValue() != null) {
if (isKeyValue) {
dictReplaces.put(t.getValue(), t.getText());
} else {
dictReplaces.put(t.getText(), t.getValue());
}
}
}
return dictReplaces.isEmpty() ? null : dictReplaces;
}
}
- 翻译逻辑优化:
private Object replaceValueHashMap(HashMap<String, String> replace,
Object result, boolean multiReplace) {
if (result == null) return "";
if (replace == null || replace.isEmpty()) return result;
String temp = String.valueOf(result);
if (temp.indexOf(",") > 0 && multiReplace) {
// 处理多值情况
return handleMultiValues(replace, temp);
} else {
return replace.getOrDefault(temp, temp);
}
}
优化效果
通过上述优化,在相同硬件环境下:
- 优化前:3万条数据导出超时(超过30秒)
- 优化后:相同数据量导出仅需7秒左右
性能提升约4倍,且随着数据量增大,优化效果更加明显。
技术要点
- 数据结构选择:HashMap的O(1)查找复杂度相比数组遍历的O(n)有显著优势
- 预处理思想:将字典数据预先处理为适合快速查找的结构
- 内存换时间:虽然HashMap占用更多内存,但换来了巨大的性能提升
- 兼容性处理:保持原有接口契约,确保不影响其他模块
适用场景
这种优化特别适用于:
- 数据导出功能
- 报表生成场景
- 大数据量列表展示
- 需要频繁进行字典翻译的业务
总结
在Jeecg-Boot项目中,通过将字典翻译的数据结构从字符串数组改为HashMap,我们有效解决了大数据量下的性能瓶颈问题。这种优化思路不仅适用于字典翻译场景,也可以推广到其他需要频繁查找匹配的业务场景中。在实际项目中,我们需要根据具体业务特点选择合适的数据结构和算法,在内存使用和性能之间取得平衡。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-7BSpark-Prover-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
305
2.68 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
136
163
React Native鸿蒙化仓库
JavaScript
233
309
暂无简介
Dart
596
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
630
227
仓颉编译器源码及 cjdb 调试工具。
C++
123
642
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
614
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
195
71
仓颉编程语言测试用例。
Cangjie
36
642