DuckDB数据库聚合函数并行化性能分析
2025-05-05 18:11:42作者:平淮齐Percy
概述
DuckDB作为一款高性能的分析型数据库,其执行引擎设计对查询性能有着重要影响。本文通过分析一个典型场景下的性能表现,深入探讨DuckDB中聚合函数执行机制的特点及其优化空间。
问题背景
在分析一个包含10亿条随机数数据的表时,用户发现当查询包含窗口函数(LAG)和聚合函数(PRODUCT)时,DuckDB的CPU利用率不高,整体执行时间比预期要长。具体表现为:
- 数据加载阶段能够充分利用多核
- 聚合计算阶段主要使用单核或少量核心
- 与Pandas相比,某些操作性能差距可达56%
技术分析
执行计划解析
通过EXPLAIN ANALYZE分析查询计划,可以清晰地看到执行流程:
- 表扫描阶段(0.16s):高效并行扫描
- 窗口函数阶段(0.45s):使用STREAMING_WINDOW算子
- 聚合阶段(1.07s):UNGROUPED_AGGREGATE算子
关键发现是STREAMING_WINDOW算子采用了单线程流式处理模式,这导致后续的聚合操作也被限制在同一个执行管道中,无法并行化。
性能对比测试
通过三种不同方式的测试对比:
- 原始查询方式:单线程聚合,耗时较长
- 中间表方式:先将结果存入临时表再聚合,可多核并行
- Pandas方式:在某些场景下性能更优
测试结果显示,当使用中间表方式时,DuckDB的性能可以显著提升,甚至优于Pandas。
深层原因
DuckDB当前的执行引擎架构中:
- 流式窗口算子为避免物化数据,采用单线程设计
- 同一管道中的操作无法拆分并行执行
- 压缩/解压缩操作在某些情况下成为瓶颈
优化建议
针对这一性能问题,可以考虑以下优化方向:
- 查询重写:将复杂查询拆分为多个步骤,使用中间表
- 配置调整:对不压缩的数据禁用压缩(PRAGMA force_compression='uncompressed')
- 执行计划提示:强制使用非流式窗口算子
性能数据
基准测试显示不同方法的执行时间对比(单位:ms):
| 方法 | 运行1 | 运行2 | 运行3 |
|---|---|---|---|
| DuckDB原始 | 245 | 193 | 194 |
| Pandas | 122 | 130 | 136 |
| 优化后聚合 | 54 | 52 | 54 |
结论
DuckDB的流式执行引擎设计在简单查询中表现出色,但在包含窗口函数和聚合的复杂查询中可能存在并行化限制。理解执行计划的特点后,通过适当的查询重写和配置调整,可以显著提升性能。未来DuckDB可能会进一步优化执行引擎,使这类复杂查询能够自动实现更好的并行化。
对于性能敏感的应用,建议开发者在编写复杂查询时关注执行计划,必要时采用中间表策略,并合理配置数据库参数以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355