DuckDB数据库聚合函数并行化性能分析
2025-05-05 13:10:27作者:平淮齐Percy
概述
DuckDB作为一款高性能的分析型数据库,其执行引擎设计对查询性能有着重要影响。本文通过分析一个典型场景下的性能表现,深入探讨DuckDB中聚合函数执行机制的特点及其优化空间。
问题背景
在分析一个包含10亿条随机数数据的表时,用户发现当查询包含窗口函数(LAG)和聚合函数(PRODUCT)时,DuckDB的CPU利用率不高,整体执行时间比预期要长。具体表现为:
- 数据加载阶段能够充分利用多核
- 聚合计算阶段主要使用单核或少量核心
- 与Pandas相比,某些操作性能差距可达56%
技术分析
执行计划解析
通过EXPLAIN ANALYZE分析查询计划,可以清晰地看到执行流程:
- 表扫描阶段(0.16s):高效并行扫描
- 窗口函数阶段(0.45s):使用STREAMING_WINDOW算子
- 聚合阶段(1.07s):UNGROUPED_AGGREGATE算子
关键发现是STREAMING_WINDOW算子采用了单线程流式处理模式,这导致后续的聚合操作也被限制在同一个执行管道中,无法并行化。
性能对比测试
通过三种不同方式的测试对比:
- 原始查询方式:单线程聚合,耗时较长
- 中间表方式:先将结果存入临时表再聚合,可多核并行
- Pandas方式:在某些场景下性能更优
测试结果显示,当使用中间表方式时,DuckDB的性能可以显著提升,甚至优于Pandas。
深层原因
DuckDB当前的执行引擎架构中:
- 流式窗口算子为避免物化数据,采用单线程设计
- 同一管道中的操作无法拆分并行执行
- 压缩/解压缩操作在某些情况下成为瓶颈
优化建议
针对这一性能问题,可以考虑以下优化方向:
- 查询重写:将复杂查询拆分为多个步骤,使用中间表
- 配置调整:对不压缩的数据禁用压缩(PRAGMA force_compression='uncompressed')
- 执行计划提示:强制使用非流式窗口算子
性能数据
基准测试显示不同方法的执行时间对比(单位:ms):
方法 | 运行1 | 运行2 | 运行3 |
---|---|---|---|
DuckDB原始 | 245 | 193 | 194 |
Pandas | 122 | 130 | 136 |
优化后聚合 | 54 | 52 | 54 |
结论
DuckDB的流式执行引擎设计在简单查询中表现出色,但在包含窗口函数和聚合的复杂查询中可能存在并行化限制。理解执行计划的特点后,通过适当的查询重写和配置调整,可以显著提升性能。未来DuckDB可能会进一步优化执行引擎,使这类复杂查询能够自动实现更好的并行化。
对于性能敏感的应用,建议开发者在编写复杂查询时关注执行计划,必要时采用中间表策略,并合理配置数据库参数以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0369Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++097AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
202
2.17 K

React Native鸿蒙化仓库
C++
208
285

Ascend Extension for PyTorch
Python
61
94

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
977
575

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
83

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
1.2 K
133