DuckDB数据库聚合函数并行化性能分析
2025-05-05 12:29:48作者:平淮齐Percy
概述
DuckDB作为一款高性能的分析型数据库,其执行引擎设计对查询性能有着重要影响。本文通过分析一个典型场景下的性能表现,深入探讨DuckDB中聚合函数执行机制的特点及其优化空间。
问题背景
在分析一个包含10亿条随机数数据的表时,用户发现当查询包含窗口函数(LAG)和聚合函数(PRODUCT)时,DuckDB的CPU利用率不高,整体执行时间比预期要长。具体表现为:
- 数据加载阶段能够充分利用多核
- 聚合计算阶段主要使用单核或少量核心
- 与Pandas相比,某些操作性能差距可达56%
技术分析
执行计划解析
通过EXPLAIN ANALYZE分析查询计划,可以清晰地看到执行流程:
- 表扫描阶段(0.16s):高效并行扫描
- 窗口函数阶段(0.45s):使用STREAMING_WINDOW算子
- 聚合阶段(1.07s):UNGROUPED_AGGREGATE算子
关键发现是STREAMING_WINDOW算子采用了单线程流式处理模式,这导致后续的聚合操作也被限制在同一个执行管道中,无法并行化。
性能对比测试
通过三种不同方式的测试对比:
- 原始查询方式:单线程聚合,耗时较长
- 中间表方式:先将结果存入临时表再聚合,可多核并行
- Pandas方式:在某些场景下性能更优
测试结果显示,当使用中间表方式时,DuckDB的性能可以显著提升,甚至优于Pandas。
深层原因
DuckDB当前的执行引擎架构中:
- 流式窗口算子为避免物化数据,采用单线程设计
- 同一管道中的操作无法拆分并行执行
- 压缩/解压缩操作在某些情况下成为瓶颈
优化建议
针对这一性能问题,可以考虑以下优化方向:
- 查询重写:将复杂查询拆分为多个步骤,使用中间表
- 配置调整:对不压缩的数据禁用压缩(PRAGMA force_compression='uncompressed')
- 执行计划提示:强制使用非流式窗口算子
性能数据
基准测试显示不同方法的执行时间对比(单位:ms):
| 方法 | 运行1 | 运行2 | 运行3 |
|---|---|---|---|
| DuckDB原始 | 245 | 193 | 194 |
| Pandas | 122 | 130 | 136 |
| 优化后聚合 | 54 | 52 | 54 |
结论
DuckDB的流式执行引擎设计在简单查询中表现出色,但在包含窗口函数和聚合的复杂查询中可能存在并行化限制。理解执行计划的特点后,通过适当的查询重写和配置调整,可以显著提升性能。未来DuckDB可能会进一步优化执行引擎,使这类复杂查询能够自动实现更好的并行化。
对于性能敏感的应用,建议开发者在编写复杂查询时关注执行计划,必要时采用中间表策略,并合理配置数据库参数以获得最佳性能。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
443
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
822
397
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
277
329
暂无简介
Dart
702
165
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
140
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
556
111