Volcano调度器Capacity插件资源回收机制优化分析
Volcano作为一款面向高性能计算场景的Kubernetes批处理调度系统,其Capacity插件负责处理队列间的资源分配与回收逻辑。近期社区发现该插件在资源回收机制上存在一个关键设计缺陷,影响了调度器在常见场景下的资源回收能力。
问题背景
Capacity插件的ReclaimableFn函数中,存在一个关键判断逻辑:只有当被回收任务(reclaimee)在所有资源维度上都大于或等于回收请求任务(reclaimer)时,才会将该任务列为潜在回收对象。这个设计初衷可能是为了避免无效的回收尝试,但实际带来了两个严重问题:
-
单任务回收场景局限性:即使被回收任务释放的资源总量能够满足请求任务需求,但只要该任务在任一资源维度上小于请求任务,就会被过滤掉。例如节点有130CPU,现有100CPU任务需要被回收来满足101CPU新任务,这种合理场景会被错误拦截。
-
多任务协同回收失效:当需要回收多个小任务来满足一个大任务时,由于每个小任务单独都不满足"大于等于"条件,导致系统无法识别这种合理的多任务回收方案。例如需要回收两个50CPU任务来满足一个100CPU任务的情况。
技术原理分析
Volcano调度器的资源回收流程分为两个关键阶段:
-
Capacity插件筛选阶段:确定哪些队列的任务可以被回收,当前实现中包含了严格的资源比较逻辑。
-
Reclaim动作执行阶段:实际验证节点资源是否足够,这个阶段已经具备完善的资源计算逻辑,能够准确判断回收后资源是否满足需求。
问题的核心在于Capacity插件过早地进行了资源比较,而实际上这个判断应该由后续的Reclaim动作来完成。Capacity插件应该只关注队列级别的资源分配是否超出应得份额,而不需要介入具体的任务资源比较。
解决方案
经过社区讨论,确定的最佳实践是:
-
移除Capacity插件中的资源比较逻辑,将其职责限定为队列级别的资源超售判断。
-
完全依赖Reclaim动作中的资源验证逻辑,该逻辑已经能够正确处理:
- 单任务回收后的资源充足性检查
- 多任务协同回收的资源总和计算
- 跨多种资源类型(CPU、内存等)的综合判断
这种调整后,调度器能够更智能地处理各类资源回收场景,包括:
- 单个较大任务回收后满足需求的情况
- 多个小任务协同回收的方案
- 复杂资源组合场景下的最优回收选择
实现影响
该优化将显著提升Volcano在以下场景的调度能力:
-
资源碎片化环境:当集群中存在许多小任务时,能够有效整合资源供大任务使用。
-
弹性伸缩场景:在队列资源配额动态调整时,能够更灵活地重新分配资源。
-
混合负载场景:同时存在大小不一的任务时,提高整体资源利用率。
总结
通过对Volcano Capacity插件资源回收机制的优化,解决了原有设计中过度严格的任务过滤问题,使调度器能够更智能地处理各类资源回收场景。这一改进不仅修复了已知问题,还提升了系统在复杂场景下的调度能力和资源利用率,为大规模批处理作业调度提供了更可靠的基础。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









