概率机器学习手册(PML Book)中概率分布定义的精确性探讨
在概率论与统计学中,准确区分概率分布(probability distribution)与其概率密度函数(probability density function, pdf)是基础但至关重要的概念。本文基于对《概率机器学习手册》(PML Book)的审阅,探讨了书中关于Beta分布和Gamma分布定义表述的精确性问题。
概率分布与概率密度函数的区别
概率分布是一个更广泛的概念,它描述了随机变量在各个取值上的概率规律。对于连续随机变量,我们通常用概率密度函数(pdf)来描述其分布特性。概率密度函数本身不是概率,而是需要积分才能得到概率值。
Beta分布定义的精确表述
在PML Book第63页关于Beta分布的描述中,原书写道:"The beta distribution has support over the interval [0, 1] and is defined as follows..."随后给出了Beta分布的密度函数公式。这里存在两个可以改进的地方:
-
更准确的表述应该是"Beta分布在区间[0,1]上有定义,其概率密度函数(pdf)如下..."
-
在讨论参数a,b>0的条件时,原文说"确保分布是可积的",实际上应该表述为"确保概率密度函数是可积的",因为分布本身是一个更抽象的概念。
类似问题的普遍性
这个问题不仅存在于Beta分布的描述中,在Gamma分布等其他连续概率分布的描述中也存在类似情况。对于连续分布,严格来说我们定义的是其概率密度函数,而非分布本身。分布函数(cumulative distribution function, CDF)则是密度函数的积分。
为什么这种精确性很重要
对于初学者来说,准确理解这些基本概念的区别至关重要:
- 概率密度函数描述的是"密度"而非直接的概率
- 分布函数给出的是累积概率
- 参数约束条件直接影响的是密度函数的性质
这种概念上的混淆可能导致后续学习更复杂概念时的困难,特别是在处理似然函数、贝叶斯推断等高级主题时。
总结
技术文档,特别是教学性质的书籍,在基础概念的定义上应当尽可能精确。PML Book的作者已经接受了这个建议并做出了相应修改,这体现了开源项目持续改进的优势。对于读者而言,理解这些细微但重要的区别将有助于建立更坚实的概率论基础。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00