首页
/ 概率机器学习手册(PML Book)中概率分布定义的精确性探讨

概率机器学习手册(PML Book)中概率分布定义的精确性探讨

2025-06-08 07:12:07作者:袁立春Spencer

在概率论与统计学中,准确区分概率分布(probability distribution)与其概率密度函数(probability density function, pdf)是基础但至关重要的概念。本文基于对《概率机器学习手册》(PML Book)的审阅,探讨了书中关于Beta分布和Gamma分布定义表述的精确性问题。

概率分布与概率密度函数的区别

概率分布是一个更广泛的概念,它描述了随机变量在各个取值上的概率规律。对于连续随机变量,我们通常用概率密度函数(pdf)来描述其分布特性。概率密度函数本身不是概率,而是需要积分才能得到概率值。

Beta分布定义的精确表述

在PML Book第63页关于Beta分布的描述中,原书写道:"The beta distribution has support over the interval [0, 1] and is defined as follows..."随后给出了Beta分布的密度函数公式。这里存在两个可以改进的地方:

  1. 更准确的表述应该是"Beta分布在区间[0,1]上有定义,其概率密度函数(pdf)如下..."

  2. 在讨论参数a,b>0的条件时,原文说"确保分布是可积的",实际上应该表述为"确保概率密度函数是可积的",因为分布本身是一个更抽象的概念。

类似问题的普遍性

这个问题不仅存在于Beta分布的描述中,在Gamma分布等其他连续概率分布的描述中也存在类似情况。对于连续分布,严格来说我们定义的是其概率密度函数,而非分布本身。分布函数(cumulative distribution function, CDF)则是密度函数的积分。

为什么这种精确性很重要

对于初学者来说,准确理解这些基本概念的区别至关重要:

  • 概率密度函数描述的是"密度"而非直接的概率
  • 分布函数给出的是累积概率
  • 参数约束条件直接影响的是密度函数的性质

这种概念上的混淆可能导致后续学习更复杂概念时的困难,特别是在处理似然函数、贝叶斯推断等高级主题时。

总结

技术文档,特别是教学性质的书籍,在基础概念的定义上应当尽可能精确。PML Book的作者已经接受了这个建议并做出了相应修改,这体现了开源项目持续改进的优势。对于读者而言,理解这些细微但重要的区别将有助于建立更坚实的概率论基础。

登录后查看全文
热门项目推荐

项目优选

收起
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
kernelkernel
deepin linux kernel
C
22
6
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
192
273
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392
openGauss-serveropenGauss-server
openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8