Volcano项目在多云AI任务调度中的队列容量管理实践
背景与挑战
随着AI大模型训练的兴起,单一Kubernetes集群往往难以满足大规模计算需求。用户迫切需要能够在多个集群间统一提交和管理AI训练任务的能力。Volcano作为Kubernetes原生批处理调度系统,需要扩展其调度能力以支持多云环境下的AI任务调度,特别是Gang调度和队列管理等关键功能。
技术架构设计
Volcano选择基于Karmada多集群编排系统构建多云调度能力,同时补充Karmada在队列管理等方面的不足。整体架构包含三个核心组件:
-
全局Webhook管理器:通过Mutating Webhook机制暂停所有ResourceBinding的调度,实现类似Kueue的队列能力。这种松耦合设计避免了直接修改Karmada核心代码,更易于推进。
-
全局控制器管理器:包含控制器和调度器两部分。控制器为每个Volcano Job/Deployment/Pod创建关联的PodGroup;调度器监控所有待处理任务,并根据优先级恢复任务调度。
-
全局调度器:基于Karmada调度器的扩展点实现,在AssignReplica阶段注入Gang调度、容量管理等必要能力。
关键技术实现
任务调度控制机制
通过为ResourceBinding资源添加调度暂停门控,实现了任务调度的精细控制。当任务提交后,首先处于暂停状态,等待队列系统按优先级和资源可用性决定何时启动实际调度。
优先级调度实现
为ResourceBinding添加优先级字段,使调度器能够按照任务优先级顺序进行调度。高优先级任务将优先获得资源分配,这对关键AI训练任务尤为重要。
状态同步机制
建立了从子集群到控制平面集群的任务状态同步通道,确保在多云环境下用户能够准确获取任务执行状态。这对于长时间运行的AI训练任务监控至关重要。
任务分割能力
支持将单一模板任务(如mindspore-cpu)分割到多个集群执行,充分利用多云环境的计算资源。同时正在开发多模板任务的分割能力,以支持更复杂的AI工作负载。
队列容量管理实践
队列容量管理是多云调度的核心功能之一,主要实现思路包括:
-
资源配额管理:为每个队列设置跨集群的资源配额限制,防止单个队列占用过多资源。
-
公平调度算法:基于任务优先级和资源需求进行调度决策,确保高优先级任务优先获得资源,同时避免低优先级任务长期得不到执行。
-
共享值排序:开发中的队列排序算法,考虑任务资源需求、优先级等多维度因素,实现更智能的调度决策。
未来发展方向
-
完善Gang调度:支持MinAvailable最小副本数等特性,确保AI训练任务要么获得足够资源完整执行,要么不调度。
-
智能集群选择:基于各集群资源状况、网络延迟等因素,为任务选择最优执行集群。
-
调度策略扩展:推动Karmada调度器支持更多自定义插件和策略,突破当前Duplicated和Divided策略的限制。
Volcano在多云AI任务调度领域的探索,为大规模分布式AI训练提供了可靠的底层支撑。随着功能的不断完善,将更好地满足企业对多云环境下AI工作负载管理的需求。
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选









