MyDumper v0.19.1-2版本发布:MySQL数据库备份工具的重要更新
MyDumper是一个高性能的MySQL数据库备份工具,它采用多线程设计,能够快速备份大型数据库。与传统的mysqldump工具相比,MyDumper在备份速度和效率上有显著提升,特别适合大规模生产环境使用。
版本更新亮点
最新发布的v0.19.1-2版本包含了几项重要改进和错误修复:
-
多列排序修复:解决了在多列排序场景下可能出现的问题,确保备份数据的完整性和一致性。
-
文件编号优化:改进了备份文件中的编号系统,使文件命名更加规范和有序。
-
Noble系统支持:新增了对Ubuntu Noble系统的支持,包括默认MySQL库的构建选项。
技术改进细节
多列排序修复
在之前的版本中,当处理包含多列排序条件的表时,可能会出现备份不完整或数据不一致的情况。新版本彻底修复了这一问题,确保在多列排序场景下也能正确备份所有数据。
文件编号系统优化
备份文件的编号系统得到了改进,现在生成的备份文件编号更加规范有序。这一改进使得备份文件的管理更加方便,特别是在处理大量备份文件时。
系统兼容性增强
新版本特别增加了对Ubuntu Noble系统的支持,包括:
- 默认MySQL库的构建选项
- 针对Noble系统的优化配置
- 同时支持amd64和arm64架构
安装包完整性验证
为了确保下载安全,官方提供了完整的校验信息:
MD5校验值:
mydumper-0.19.1-2.el7.x86_64.rpm: 20163bf765a8e3b4be1effb8bc4ce3ae
mydumper-0.19.1-2.el8.x86_64.rpm: 9205c5f2ba9452849f0b27f46ac9908c
mydumper_0.19.1-2.jammy_amd64.deb: c83ef1c114e8b0ece38d57d43ef222c42ec0864fcea02a141481543b5a4cdf41
SHA256校验值:
mydumper-0.19.1-2.el7.x86_64.rpm: b32481950ec8f81d29198fd648a2d93504306c415a27ce7c21d9e1f40c096e3b
mydumper-0.19.1-2.el8.x86_64.rpm: 3284f8b3dd2f93b426a24b31ded8c74f645411414b151c2d9b23542b1fbfa6ee
mydumper_0.19.1-2.jammy_amd64.deb: c83ef1c114e8b0ece38d57d43ef222c42ec0864fcea02a141481543b5a4cdf41
适用系统版本
新版本提供了广泛的系统支持,包括:
-
RPM包:
- CentOS/RHEL 7 (x86_64)
- CentOS/RHEL 8 (x86_64和aarch64)
- CentOS/RHEL 9 (x86_64和aarch64)
-
DEB包:
- Ubuntu Bionic (18.04)
- Ubuntu Focal (20.04)
- Ubuntu Jammy (22.04)
- Ubuntu Noble (24.04)
- Debian Buster (10)
- Debian Bullseye (11)
- Debian Bookworm (12)
- Debian Trixie (测试版)
升级建议
对于正在使用MyDumper的生产环境,特别是遇到多列排序问题的用户,建议尽快升级到v0.19.1-2版本。新版本不仅修复了已知问题,还提供了更好的系统兼容性和稳定性。
对于使用Ubuntu Noble系统的用户,这是首个官方支持该系统的MyDumper版本,建议所有Noble用户升级以获得最佳体验。
结语
MyDumper v0.19.1-2版本的发布,进一步巩固了其作为高性能MySQL备份工具的地位。通过修复关键问题、优化现有功能并扩展系统支持范围,这个版本为数据库管理员提供了更可靠、更高效的备份解决方案。无论是小型项目还是大型企业级应用,MyDumper都能满足各种规模的MySQL数据库备份需求。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00