LLM Foundry项目中LoRA权重转换的技术实践
2025-06-14 07:32:45作者:宗隆裙
在LLM Foundry项目中进行模型微调时,使用LoRA(Low-Rank Adaptation)技术是一种高效的方式。本文将从技术实现角度详细介绍如何在LLM Foundry项目中正确配置LoRA微调并生成适配器权重。
LoRA配置基础
在LLM Foundry的配置文件中,LoRA相关参数需要正确设置。一个典型的配置示例如下:
peft_config:
r: 64
peft_type: LORA
task_type: CAUSAL_LM
lora_alpha: 128
lora_dropout: 0.05
target_modules:
- Wqkv
其中关键参数含义:
r: LoRA的秩,决定低秩矩阵的大小lora_alpha: LoRA缩放因子lora_dropout: LoRA层的dropout率target_modules: 应用LoRA的目标模块列表
训练过程中的权重保存
在训练完成后,默认生成的检查点文件可能无法直接用于Hugging Face的推理流程。为了解决这个问题,LLM Foundry提供了两种解决方案:
方案一:训练时直接生成适配器权重
推荐的做法是在训练配置中添加HF检查点回调,这样可以在训练过程中直接生成Hugging Face兼容的适配器权重:
callbacks:
hf_checkpointer:
save_folder: ./{run_name}/checkpoints
save_interval: "1ep"
这种配置会在每个epoch结束时生成包含以下文件的适配器权重:
- adapter_config.json: 适配器配置信息
- adapter_model.safetensors: 适配器权重文件
- 相关的tokenizer配置文件
方案二:训练后转换权重
如果已经完成了训练但未使用HF检查点回调,可以尝试使用LLM Foundry提供的转换脚本。需要注意的是,由于项目代码变更,某些版本可能存在兼容性问题。如果遇到类似"MultiheadAttention.init() got an unexpected keyword argument 'prefix_lm'"的错误,可能需要回退到移除prefix LM功能之前的版本。
推理使用
生成的适配器权重可以方便地用于推理:
from transformers import AutoModelForCausalLM
from peft import PeftModel
# 加载基础模型
base_model = AutoModelForCausalLM.from_pretrained("mosaicml/mpt-7b")
# 加载适配器权重
peft_model_id = "path_to_adapter"
model = PeftModel.from_pretrained(base_model, peft_model_id)
最佳实践建议
- 训练前规划:如果确定需要Hugging Face兼容的权重,建议在训练配置中直接添加HF检查点回调
- 版本控制:注意LLM Foundry不同版本间的兼容性变化
- 参数调优:根据具体任务调整LoRA的秩(r)和alpha值,平衡模型性能和微调效果
- 目标模块选择:针对不同模型架构,选择合适的目标模块进行适配
通过以上方法,可以高效地在LLM Foundry项目中实现LoRA微调,并生成兼容Hugging Face生态的适配器权重,便于后续的推理和应用部署。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
223
245
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
672
157
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
662
313
React Native鸿蒙化仓库
JavaScript
262
323
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
860
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
218