Langfuse项目与Google Vertex AI Gemini集成中的令牌验证问题解析
问题背景
在使用Langfuse Python SDK与Google Vertex AI Gemini模型(特别是2.0 Flash和1.5 Pro版本)集成时,开发人员遇到了一个关于令牌使用详情(usageDetails)的验证错误。这个问题主要出现在从其他AI服务(如Azure OpenAI)迁移到Gemini模型时,Langfuse的UpdateGenerationBody在进行数据验证时抛出异常。
错误表现
系统会报告7个验证错误,主要集中在usageDetails字段上:
- prompt_tokens_details、candidates_tokens_details和cache_tokens_details的值不是有效整数
- 缺少必需的prompt_tokens、completion_tokens和total_tokens字段
- prompt_tokens_details中的modality字段值不是有效整数
这些错误表明Langfuse SDK期望的令牌使用数据结构与Gemini模型返回的实际数据结构不匹配。
技术分析
数据结构差异
Langfuse SDK期望的usageDetails结构有两种可能形式:
- 字符串到整数的映射
- 遵循OpenAIUsageSchema的结构,包含prompt_tokens、completion_tokens和total_tokens等整数字段
然而,Gemini模型返回的令牌使用数据采用了不同的命名约定和结构:
- 使用input_tokens代替prompt_tokens
- 使用output_tokens代替completion_tokens
- 数据可能存储在generation_info["usage_metadata"]或message.usage_metadata中
版本兼容性问题
这个问题在不同版本的google-cloud-aiplatform库中表现不同。较新版本(1.78.0之后)似乎改变了数据返回格式,导致与Langfuse的验证机制不兼容。
解决方案
临时解决方案
目前确认有效的临时解决方案是将google-cloud-aiplatform降级到1.78.0版本:
pip install google-cloud-aiplatform==1.78.0
代码层解决方案
对于需要保持新版本库的用户,可以通过重写on_llm_end方法手动转换数据结构:
def on_llm_end(self, response, **kwargs):
# 提取并转换Gemini的用量数据
transformed_usage = None
generation = response.generations[-1][-1]
if isinstance(generation, ChatGeneration):
# 检查可能的用量数据位置
usage = None
if generation.generation_info and "usage_metadata" in generation.generation_info:
usage = generation.generation_info["usage_metadata"]
elif hasattr(generation.message, "usage_metadata"):
usage = generation.message.usage_metadata
if usage:
# 转换数据结构
transformed_usage = {
"prompt_tokens": usage.get("input_tokens", 0),
"completion_tokens": usage.get("output_tokens", 0),
"total_tokens": usage.get("total_tokens", 0),
}
kwargs["usage"] = transformed_usage
# 调用父类方法
try:
super().on_llm_end(response, **kwargs)
except TypeError as e:
# 处理版本兼容性问题
if "RunTree.end() got an unexpected keyword argument 'output'" in str(e):
if 'output' in kwargs:
del kwargs['output']
super().on_llm_end(response, **kwargs)
else:
raise
最佳实践建议
-
版本控制:在使用Langfuse与Gemini集成时,严格控制依赖库版本,特别是google-cloud-aiplatform。
-
数据验证:在关键节点添加数据验证逻辑,确保数据结构符合预期。
-
错误处理:实现健壮的错误处理机制,特别是对于跨不同AI服务的数据结构差异。
-
监控:在生产环境中密切监控令牌使用统计,确保数据转换没有影响统计准确性。
未来展望
这个问题本质上源于不同AI服务提供商之间的数据格式差异。理想情况下,Langfuse等观测工具应该提供更灵活的数据适配层,或者各AI服务提供商应该考虑制定统一的数据交换标准。在此之前,开发人员需要关注这类集成问题,并在系统设计时预留足够的适配空间。
对于长期项目,建议封装一个统一的数据适配层,隔离不同AI服务的细节差异,使业务代码能够以统一的方式处理来自不同AI服务的响应。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00