Langfuse项目与Google Vertex AI Gemini集成中的令牌验证问题解析
问题背景
在使用Langfuse Python SDK与Google Vertex AI Gemini模型(特别是2.0 Flash和1.5 Pro版本)集成时,开发人员遇到了一个关于令牌使用详情(usageDetails)的验证错误。这个问题主要出现在从其他AI服务(如Azure OpenAI)迁移到Gemini模型时,Langfuse的UpdateGenerationBody在进行数据验证时抛出异常。
错误表现
系统会报告7个验证错误,主要集中在usageDetails字段上:
- prompt_tokens_details、candidates_tokens_details和cache_tokens_details的值不是有效整数
- 缺少必需的prompt_tokens、completion_tokens和total_tokens字段
- prompt_tokens_details中的modality字段值不是有效整数
这些错误表明Langfuse SDK期望的令牌使用数据结构与Gemini模型返回的实际数据结构不匹配。
技术分析
数据结构差异
Langfuse SDK期望的usageDetails结构有两种可能形式:
- 字符串到整数的映射
- 遵循OpenAIUsageSchema的结构,包含prompt_tokens、completion_tokens和total_tokens等整数字段
然而,Gemini模型返回的令牌使用数据采用了不同的命名约定和结构:
- 使用input_tokens代替prompt_tokens
- 使用output_tokens代替completion_tokens
- 数据可能存储在generation_info["usage_metadata"]或message.usage_metadata中
版本兼容性问题
这个问题在不同版本的google-cloud-aiplatform库中表现不同。较新版本(1.78.0之后)似乎改变了数据返回格式,导致与Langfuse的验证机制不兼容。
解决方案
临时解决方案
目前确认有效的临时解决方案是将google-cloud-aiplatform降级到1.78.0版本:
pip install google-cloud-aiplatform==1.78.0
代码层解决方案
对于需要保持新版本库的用户,可以通过重写on_llm_end方法手动转换数据结构:
def on_llm_end(self, response, **kwargs):
# 提取并转换Gemini的用量数据
transformed_usage = None
generation = response.generations[-1][-1]
if isinstance(generation, ChatGeneration):
# 检查可能的用量数据位置
usage = None
if generation.generation_info and "usage_metadata" in generation.generation_info:
usage = generation.generation_info["usage_metadata"]
elif hasattr(generation.message, "usage_metadata"):
usage = generation.message.usage_metadata
if usage:
# 转换数据结构
transformed_usage = {
"prompt_tokens": usage.get("input_tokens", 0),
"completion_tokens": usage.get("output_tokens", 0),
"total_tokens": usage.get("total_tokens", 0),
}
kwargs["usage"] = transformed_usage
# 调用父类方法
try:
super().on_llm_end(response, **kwargs)
except TypeError as e:
# 处理版本兼容性问题
if "RunTree.end() got an unexpected keyword argument 'output'" in str(e):
if 'output' in kwargs:
del kwargs['output']
super().on_llm_end(response, **kwargs)
else:
raise
最佳实践建议
-
版本控制:在使用Langfuse与Gemini集成时,严格控制依赖库版本,特别是google-cloud-aiplatform。
-
数据验证:在关键节点添加数据验证逻辑,确保数据结构符合预期。
-
错误处理:实现健壮的错误处理机制,特别是对于跨不同AI服务的数据结构差异。
-
监控:在生产环境中密切监控令牌使用统计,确保数据转换没有影响统计准确性。
未来展望
这个问题本质上源于不同AI服务提供商之间的数据格式差异。理想情况下,Langfuse等观测工具应该提供更灵活的数据适配层,或者各AI服务提供商应该考虑制定统一的数据交换标准。在此之前,开发人员需要关注这类集成问题,并在系统设计时预留足够的适配空间。
对于长期项目,建议封装一个统一的数据适配层,隔离不同AI服务的细节差异,使业务代码能够以统一的方式处理来自不同AI服务的响应。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C030
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00